[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class cqr
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | QR decomposition of a rectangular complex matrix of size MxN
|
---|
| 35 |
|
---|
| 36 | Input parameters:
|
---|
| 37 | A - matrix A whose indexes range within [0..M-1, 0..N-1]
|
---|
| 38 | M - number of rows in matrix A.
|
---|
| 39 | N - number of columns in matrix A.
|
---|
| 40 |
|
---|
| 41 | Output parameters:
|
---|
| 42 | A - matrices Q and R in compact form
|
---|
| 43 | Tau - array of scalar factors which are used to form matrix Q. Array
|
---|
| 44 | whose indexes range within [0.. Min(M,N)-1]
|
---|
| 45 |
|
---|
| 46 | Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
|
---|
| 47 | MxM, R - upper triangular (or upper trapezoid) matrix of size MxN.
|
---|
| 48 |
|
---|
| 49 | -- LAPACK routine (version 3.0) --
|
---|
| 50 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 51 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 52 | September 30, 1994
|
---|
| 53 | *************************************************************************/
|
---|
| 54 | public static void cmatrixqr(ref AP.Complex[,] a,
|
---|
| 55 | int m,
|
---|
| 56 | int n,
|
---|
| 57 | ref AP.Complex[] tau)
|
---|
| 58 | {
|
---|
| 59 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 60 | AP.Complex[] t = new AP.Complex[0];
|
---|
| 61 | int i = 0;
|
---|
| 62 | int k = 0;
|
---|
| 63 | int mmi = 0;
|
---|
| 64 | int minmn = 0;
|
---|
| 65 | AP.Complex tmp = 0;
|
---|
| 66 | int i_ = 0;
|
---|
| 67 | int i1_ = 0;
|
---|
| 68 |
|
---|
| 69 | minmn = Math.Min(m, n);
|
---|
| 70 | if( minmn<=0 )
|
---|
| 71 | {
|
---|
| 72 | return;
|
---|
| 73 | }
|
---|
| 74 | work = new AP.Complex[n-1+1];
|
---|
| 75 | t = new AP.Complex[m+1];
|
---|
| 76 | tau = new AP.Complex[minmn-1+1];
|
---|
| 77 |
|
---|
| 78 | //
|
---|
| 79 | // Test the input arguments
|
---|
| 80 | //
|
---|
| 81 | k = Math.Min(m, n);
|
---|
| 82 | for(i=0; i<=k-1; i++)
|
---|
| 83 | {
|
---|
| 84 |
|
---|
| 85 | //
|
---|
| 86 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
| 87 | //
|
---|
| 88 | mmi = m-i;
|
---|
| 89 | i1_ = (i) - (1);
|
---|
| 90 | for(i_=1; i_<=mmi;i_++)
|
---|
| 91 | {
|
---|
| 92 | t[i_] = a[i_+i1_,i];
|
---|
| 93 | }
|
---|
| 94 | creflections.complexgeneratereflection(ref t, mmi, ref tmp);
|
---|
| 95 | tau[i] = tmp;
|
---|
| 96 | i1_ = (1) - (i);
|
---|
| 97 | for(i_=i; i_<=m-1;i_++)
|
---|
| 98 | {
|
---|
| 99 | a[i_,i] = t[i_+i1_];
|
---|
| 100 | }
|
---|
| 101 | t[1] = 1;
|
---|
| 102 | if( i<n-1 )
|
---|
| 103 | {
|
---|
| 104 |
|
---|
| 105 | //
|
---|
| 106 | // Apply H'(i) to A(i:m,i+1:n) from the left
|
---|
| 107 | //
|
---|
| 108 | creflections.complexapplyreflectionfromtheleft(ref a, AP.Math.Conj(tau[i]), ref t, i, m-1, i+1, n-1, ref work);
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 |
|
---|
| 114 | /*************************************************************************
|
---|
| 115 | Partial unpacking of matrix Q from QR decomposition of a complex matrix A.
|
---|
| 116 |
|
---|
| 117 | Input parameters:
|
---|
| 118 | QR - matrices Q and R in compact form.
|
---|
| 119 | Output of CMatrixQR subroutine .
|
---|
| 120 | M - number of rows in matrix A. M>=0.
|
---|
| 121 | N - number of rows in matrix A. N>=0.
|
---|
| 122 | Tau - scalar factors which are used to form Q.
|
---|
| 123 | Output of CMatrixQR subroutine .
|
---|
| 124 | QColumns - required number of columns in matrix Q. M>=QColumns>=0.
|
---|
| 125 |
|
---|
| 126 | Output parameters:
|
---|
| 127 | Q - first QColumns columns of matrix Q.
|
---|
| 128 | Array whose index ranges within [0..M-1, 0..QColumns-1].
|
---|
| 129 | If QColumns=0, array isn't changed.
|
---|
| 130 |
|
---|
| 131 | -- ALGLIB --
|
---|
| 132 | Copyright 2005 by Bochkanov Sergey
|
---|
| 133 | *************************************************************************/
|
---|
| 134 | public static void cmatrixqrunpackq(ref AP.Complex[,] qr,
|
---|
| 135 | int m,
|
---|
| 136 | int n,
|
---|
| 137 | ref AP.Complex[] tau,
|
---|
| 138 | int qcolumns,
|
---|
| 139 | ref AP.Complex[,] q)
|
---|
| 140 | {
|
---|
| 141 | int i = 0;
|
---|
| 142 | int j = 0;
|
---|
| 143 | int k = 0;
|
---|
| 144 | int minmn = 0;
|
---|
| 145 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 146 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 147 | int vm = 0;
|
---|
| 148 | int i_ = 0;
|
---|
| 149 | int i1_ = 0;
|
---|
| 150 |
|
---|
| 151 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
|
---|
| 152 | if( m<=0 | n<=0 | qcolumns<=0 )
|
---|
| 153 | {
|
---|
| 154 | return;
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | //
|
---|
| 158 | // init
|
---|
| 159 | //
|
---|
| 160 | minmn = Math.Min(m, n);
|
---|
| 161 | k = Math.Min(minmn, qcolumns);
|
---|
| 162 | q = new AP.Complex[m-1+1, qcolumns-1+1];
|
---|
| 163 | v = new AP.Complex[m+1];
|
---|
| 164 | work = new AP.Complex[qcolumns-1+1];
|
---|
| 165 | for(i=0; i<=m-1; i++)
|
---|
| 166 | {
|
---|
| 167 | for(j=0; j<=qcolumns-1; j++)
|
---|
| 168 | {
|
---|
| 169 | if( i==j )
|
---|
| 170 | {
|
---|
| 171 | q[i,j] = 1;
|
---|
| 172 | }
|
---|
| 173 | else
|
---|
| 174 | {
|
---|
| 175 | q[i,j] = 0;
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | //
|
---|
| 181 | // unpack Q
|
---|
| 182 | //
|
---|
| 183 | for(i=k-1; i>=0; i--)
|
---|
| 184 | {
|
---|
| 185 |
|
---|
| 186 | //
|
---|
| 187 | // Apply H(i)
|
---|
| 188 | //
|
---|
| 189 | vm = m-i;
|
---|
| 190 | i1_ = (i) - (1);
|
---|
| 191 | for(i_=1; i_<=vm;i_++)
|
---|
| 192 | {
|
---|
| 193 | v[i_] = qr[i_+i1_,i];
|
---|
| 194 | }
|
---|
| 195 | v[1] = 1;
|
---|
| 196 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i, m-1, 0, qcolumns-1, ref work);
|
---|
| 197 | }
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | /*************************************************************************
|
---|
| 202 | Unpacking of matrix R from the QR decomposition of a matrix A
|
---|
| 203 |
|
---|
| 204 | Input parameters:
|
---|
| 205 | A - matrices Q and R in compact form.
|
---|
| 206 | Output of CMatrixQR subroutine.
|
---|
| 207 | M - number of rows in given matrix A. M>=0.
|
---|
| 208 | N - number of columns in given matrix A. N>=0.
|
---|
| 209 |
|
---|
| 210 | Output parameters:
|
---|
| 211 | R - matrix R, array[0..M-1, 0..N-1].
|
---|
| 212 |
|
---|
| 213 | -- ALGLIB --
|
---|
| 214 | Copyright 2005 by Bochkanov Sergey
|
---|
| 215 | *************************************************************************/
|
---|
| 216 | public static void cmatrixqrunpackr(ref AP.Complex[,] a,
|
---|
| 217 | int m,
|
---|
| 218 | int n,
|
---|
| 219 | ref AP.Complex[,] r)
|
---|
| 220 | {
|
---|
| 221 | int i = 0;
|
---|
| 222 | int k = 0;
|
---|
| 223 | int i_ = 0;
|
---|
| 224 |
|
---|
| 225 | if( m<=0 | n<=0 )
|
---|
| 226 | {
|
---|
| 227 | return;
|
---|
| 228 | }
|
---|
| 229 | k = Math.Min(m, n);
|
---|
| 230 | r = new AP.Complex[m-1+1, n-1+1];
|
---|
| 231 | for(i=0; i<=n-1; i++)
|
---|
| 232 | {
|
---|
| 233 | r[0,i] = 0;
|
---|
| 234 | }
|
---|
| 235 | for(i=1; i<=m-1; i++)
|
---|
| 236 | {
|
---|
| 237 | for(i_=0; i_<=n-1;i_++)
|
---|
| 238 | {
|
---|
| 239 | r[i,i_] = r[0,i_];
|
---|
| 240 | }
|
---|
| 241 | }
|
---|
| 242 | for(i=0; i<=k-1; i++)
|
---|
| 243 | {
|
---|
| 244 | for(i_=i; i_<=n-1;i_++)
|
---|
| 245 | {
|
---|
| 246 | r[i,i_] = a[i,i_];
|
---|
| 247 | }
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 |
|
---|
| 252 | public static void complexqrdecomposition(ref AP.Complex[,] a,
|
---|
| 253 | int m,
|
---|
| 254 | int n,
|
---|
| 255 | ref AP.Complex[] tau)
|
---|
| 256 | {
|
---|
| 257 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 258 | AP.Complex[] t = new AP.Complex[0];
|
---|
| 259 | int i = 0;
|
---|
| 260 | int k = 0;
|
---|
| 261 | int mmip1 = 0;
|
---|
| 262 | int minmn = 0;
|
---|
| 263 | AP.Complex tmp = 0;
|
---|
| 264 | int i_ = 0;
|
---|
| 265 | int i1_ = 0;
|
---|
| 266 |
|
---|
| 267 | minmn = Math.Min(m, n);
|
---|
| 268 | work = new AP.Complex[n+1];
|
---|
| 269 | t = new AP.Complex[m+1];
|
---|
| 270 | tau = new AP.Complex[minmn+1];
|
---|
| 271 |
|
---|
| 272 | //
|
---|
| 273 | // Test the input arguments
|
---|
| 274 | //
|
---|
| 275 | k = Math.Min(m, n);
|
---|
| 276 | for(i=1; i<=k; i++)
|
---|
| 277 | {
|
---|
| 278 |
|
---|
| 279 | //
|
---|
| 280 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
| 281 | //
|
---|
| 282 | mmip1 = m-i+1;
|
---|
| 283 | i1_ = (i) - (1);
|
---|
| 284 | for(i_=1; i_<=mmip1;i_++)
|
---|
| 285 | {
|
---|
| 286 | t[i_] = a[i_+i1_,i];
|
---|
| 287 | }
|
---|
| 288 | creflections.complexgeneratereflection(ref t, mmip1, ref tmp);
|
---|
| 289 | tau[i] = tmp;
|
---|
| 290 | i1_ = (1) - (i);
|
---|
| 291 | for(i_=i; i_<=m;i_++)
|
---|
| 292 | {
|
---|
| 293 | a[i_,i] = t[i_+i1_];
|
---|
| 294 | }
|
---|
| 295 | t[1] = 1;
|
---|
| 296 | if( i<n )
|
---|
| 297 | {
|
---|
| 298 |
|
---|
| 299 | //
|
---|
| 300 | // Apply H'(i) to A(i:m,i+1:n) from the left
|
---|
| 301 | //
|
---|
| 302 | creflections.complexapplyreflectionfromtheleft(ref a, AP.Math.Conj(tau[i]), ref t, i, m, i+1, n, ref work);
|
---|
| 303 | }
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 |
|
---|
| 307 |
|
---|
| 308 | public static void complexunpackqfromqr(ref AP.Complex[,] qr,
|
---|
| 309 | int m,
|
---|
| 310 | int n,
|
---|
| 311 | ref AP.Complex[] tau,
|
---|
| 312 | int qcolumns,
|
---|
| 313 | ref AP.Complex[,] q)
|
---|
| 314 | {
|
---|
| 315 | int i = 0;
|
---|
| 316 | int j = 0;
|
---|
| 317 | int k = 0;
|
---|
| 318 | int minmn = 0;
|
---|
| 319 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 320 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 321 | int vm = 0;
|
---|
| 322 | int i_ = 0;
|
---|
| 323 | int i1_ = 0;
|
---|
| 324 |
|
---|
| 325 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
|
---|
| 326 | if( m==0 | n==0 | qcolumns==0 )
|
---|
| 327 | {
|
---|
| 328 | return;
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 | //
|
---|
| 332 | // init
|
---|
| 333 | //
|
---|
| 334 | minmn = Math.Min(m, n);
|
---|
| 335 | k = Math.Min(minmn, qcolumns);
|
---|
| 336 | q = new AP.Complex[m+1, qcolumns+1];
|
---|
| 337 | v = new AP.Complex[m+1];
|
---|
| 338 | work = new AP.Complex[qcolumns+1];
|
---|
| 339 | for(i=1; i<=m; i++)
|
---|
| 340 | {
|
---|
| 341 | for(j=1; j<=qcolumns; j++)
|
---|
| 342 | {
|
---|
| 343 | if( i==j )
|
---|
| 344 | {
|
---|
| 345 | q[i,j] = 1;
|
---|
| 346 | }
|
---|
| 347 | else
|
---|
| 348 | {
|
---|
| 349 | q[i,j] = 0;
|
---|
| 350 | }
|
---|
| 351 | }
|
---|
| 352 | }
|
---|
| 353 |
|
---|
| 354 | //
|
---|
| 355 | // unpack Q
|
---|
| 356 | //
|
---|
| 357 | for(i=k; i>=1; i--)
|
---|
| 358 | {
|
---|
| 359 |
|
---|
| 360 | //
|
---|
| 361 | // Apply H(i)
|
---|
| 362 | //
|
---|
| 363 | vm = m-i+1;
|
---|
| 364 | i1_ = (i) - (1);
|
---|
| 365 | for(i_=1; i_<=vm;i_++)
|
---|
| 366 | {
|
---|
| 367 | v[i_] = qr[i_+i1_,i];
|
---|
| 368 | }
|
---|
| 369 | v[1] = 1;
|
---|
| 370 | creflections.complexapplyreflectionfromtheleft(ref q, tau[i], ref v, i, m, 1, qcolumns, ref work);
|
---|
| 371 | }
|
---|
| 372 | }
|
---|
| 373 |
|
---|
| 374 |
|
---|
| 375 | public static void complexqrdecompositionunpacked(AP.Complex[,] a,
|
---|
| 376 | int m,
|
---|
| 377 | int n,
|
---|
| 378 | ref AP.Complex[,] q,
|
---|
| 379 | ref AP.Complex[,] r)
|
---|
| 380 | {
|
---|
| 381 | int i = 0;
|
---|
| 382 | int j = 0;
|
---|
| 383 | int k = 0;
|
---|
| 384 | int l = 0;
|
---|
| 385 | int vm = 0;
|
---|
| 386 | AP.Complex[] tau = new AP.Complex[0];
|
---|
| 387 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 388 | AP.Complex[] v = new AP.Complex[0];
|
---|
| 389 | double tmp = 0;
|
---|
| 390 | int i_ = 0;
|
---|
| 391 |
|
---|
| 392 | a = (AP.Complex[,])a.Clone();
|
---|
| 393 |
|
---|
| 394 | k = Math.Min(m, n);
|
---|
| 395 | if( n<=0 )
|
---|
| 396 | {
|
---|
| 397 | return;
|
---|
| 398 | }
|
---|
| 399 | work = new AP.Complex[m+1];
|
---|
| 400 | v = new AP.Complex[m+1];
|
---|
| 401 | q = new AP.Complex[m+1, m+1];
|
---|
| 402 | r = new AP.Complex[m+1, n+1];
|
---|
| 403 |
|
---|
| 404 | //
|
---|
| 405 | // QRDecomposition
|
---|
| 406 | //
|
---|
| 407 | complexqrdecomposition(ref a, m, n, ref tau);
|
---|
| 408 |
|
---|
| 409 | //
|
---|
| 410 | // R
|
---|
| 411 | //
|
---|
| 412 | for(i=1; i<=n; i++)
|
---|
| 413 | {
|
---|
| 414 | r[1,i] = 0;
|
---|
| 415 | }
|
---|
| 416 | for(i=2; i<=m; i++)
|
---|
| 417 | {
|
---|
| 418 | for(i_=1; i_<=n;i_++)
|
---|
| 419 | {
|
---|
| 420 | r[i,i_] = r[1,i_];
|
---|
| 421 | }
|
---|
| 422 | }
|
---|
| 423 | for(i=1; i<=k; i++)
|
---|
| 424 | {
|
---|
| 425 | for(i_=i; i_<=n;i_++)
|
---|
| 426 | {
|
---|
| 427 | r[i,i_] = a[i,i_];
|
---|
| 428 | }
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | //
|
---|
| 432 | // Q
|
---|
| 433 | //
|
---|
| 434 | complexunpackqfromqr(ref a, m, n, ref tau, m, ref q);
|
---|
| 435 | }
|
---|
| 436 | }
|
---|
| 437 | }
|
---|