1 | /*************************************************************************
|
---|
2 | Copyright (c) 2007, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class correlationtests
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | Pearson's correlation coefficient significance test
|
---|
29 |
|
---|
30 | This test checks hypotheses about whether X and Y are samples of two
|
---|
31 | continuous distributions having zero correlation or whether their
|
---|
32 | correlation is non-zero.
|
---|
33 |
|
---|
34 | The following tests are performed:
|
---|
35 | * two-tailed test (null hypothesis - X and Y have zero correlation)
|
---|
36 | * left-tailed test (null hypothesis - the correlation coefficient is
|
---|
37 | greater than or equal to 0)
|
---|
38 | * right-tailed test (null hypothesis - the correlation coefficient is
|
---|
39 | less than or equal to 0).
|
---|
40 |
|
---|
41 | Requirements:
|
---|
42 | * the number of elements in each sample is not less than 5
|
---|
43 | * normality of distributions of X and Y.
|
---|
44 |
|
---|
45 | Input parameters:
|
---|
46 | R - Pearson's correlation coefficient for X and Y
|
---|
47 | N - number of elements in samples, N>=5.
|
---|
48 |
|
---|
49 | Output parameters:
|
---|
50 | BothTails - p-value for two-tailed test.
|
---|
51 | If BothTails is less than the given significance level
|
---|
52 | the null hypothesis is rejected.
|
---|
53 | LeftTail - p-value for left-tailed test.
|
---|
54 | If LeftTail is less than the given significance level,
|
---|
55 | the null hypothesis is rejected.
|
---|
56 | RightTail - p-value for right-tailed test.
|
---|
57 | If RightTail is less than the given significance level
|
---|
58 | the null hypothesis is rejected.
|
---|
59 |
|
---|
60 | -- ALGLIB --
|
---|
61 | Copyright 09.04.2007 by Bochkanov Sergey
|
---|
62 | *************************************************************************/
|
---|
63 | public static void pearsoncorrelationsignificance(double r,
|
---|
64 | int n,
|
---|
65 | ref double bothtails,
|
---|
66 | ref double lefttail,
|
---|
67 | ref double righttail)
|
---|
68 | {
|
---|
69 | double t = 0;
|
---|
70 | double p = 0;
|
---|
71 |
|
---|
72 |
|
---|
73 | //
|
---|
74 | // Some special cases
|
---|
75 | //
|
---|
76 | if( (double)(r)>=(double)(1) )
|
---|
77 | {
|
---|
78 | bothtails = 0.0;
|
---|
79 | lefttail = 1.0;
|
---|
80 | righttail = 0.0;
|
---|
81 | return;
|
---|
82 | }
|
---|
83 | if( (double)(r)<=(double)(-1) )
|
---|
84 | {
|
---|
85 | bothtails = 0.0;
|
---|
86 | lefttail = 0.0;
|
---|
87 | righttail = 1.0;
|
---|
88 | return;
|
---|
89 | }
|
---|
90 | if( n<5 )
|
---|
91 | {
|
---|
92 | bothtails = 1.0;
|
---|
93 | lefttail = 1.0;
|
---|
94 | righttail = 1.0;
|
---|
95 | return;
|
---|
96 | }
|
---|
97 |
|
---|
98 | //
|
---|
99 | // General case
|
---|
100 | //
|
---|
101 | t = r*Math.Sqrt((n-2)/(1-AP.Math.Sqr(r)));
|
---|
102 | p = studenttdistr.studenttdistribution(n-2, t);
|
---|
103 | bothtails = 2*Math.Min(p, 1-p);
|
---|
104 | lefttail = p;
|
---|
105 | righttail = 1-p;
|
---|
106 | }
|
---|
107 |
|
---|
108 |
|
---|
109 | /*************************************************************************
|
---|
110 | Spearman's rank correlation coefficient significance test
|
---|
111 |
|
---|
112 | This test checks hypotheses about whether X and Y are samples of two
|
---|
113 | continuous distributions having zero correlation or whether their
|
---|
114 | correlation is non-zero.
|
---|
115 |
|
---|
116 | The following tests are performed:
|
---|
117 | * two-tailed test (null hypothesis - X and Y have zero correlation)
|
---|
118 | * left-tailed test (null hypothesis - the correlation coefficient is
|
---|
119 | greater than or equal to 0)
|
---|
120 | * right-tailed test (null hypothesis - the correlation coefficient is
|
---|
121 | less than or equal to 0).
|
---|
122 |
|
---|
123 | Requirements:
|
---|
124 | * the number of elements in each sample is not less than 5.
|
---|
125 |
|
---|
126 | The test is non-parametric and doesn't require distributions X and Y to be
|
---|
127 | normal.
|
---|
128 |
|
---|
129 | Input parameters:
|
---|
130 | R - Spearman's rank correlation coefficient for X and Y
|
---|
131 | N - number of elements in samples, N>=5.
|
---|
132 |
|
---|
133 | Output parameters:
|
---|
134 | BothTails - p-value for two-tailed test.
|
---|
135 | If BothTails is less than the given significance level
|
---|
136 | the null hypothesis is rejected.
|
---|
137 | LeftTail - p-value for left-tailed test.
|
---|
138 | If LeftTail is less than the given significance level,
|
---|
139 | the null hypothesis is rejected.
|
---|
140 | RightTail - p-value for right-tailed test.
|
---|
141 | If RightTail is less than the given significance level
|
---|
142 | the null hypothesis is rejected.
|
---|
143 |
|
---|
144 | -- ALGLIB --
|
---|
145 | Copyright 09.04.2007 by Bochkanov Sergey
|
---|
146 | *************************************************************************/
|
---|
147 | public static void spearmanrankcorrelationsignificance(double r,
|
---|
148 | int n,
|
---|
149 | ref double bothtails,
|
---|
150 | ref double lefttail,
|
---|
151 | ref double righttail)
|
---|
152 | {
|
---|
153 | double t = 0;
|
---|
154 | double p = 0;
|
---|
155 |
|
---|
156 |
|
---|
157 | //
|
---|
158 | // Special case
|
---|
159 | //
|
---|
160 | if( n<5 )
|
---|
161 | {
|
---|
162 | bothtails = 1.0;
|
---|
163 | lefttail = 1.0;
|
---|
164 | righttail = 1.0;
|
---|
165 | return;
|
---|
166 | }
|
---|
167 |
|
---|
168 | //
|
---|
169 | // General case
|
---|
170 | //
|
---|
171 | if( (double)(r)>=(double)(1) )
|
---|
172 | {
|
---|
173 | t = 1.0E10;
|
---|
174 | }
|
---|
175 | else
|
---|
176 | {
|
---|
177 | if( (double)(r)<=(double)(-1) )
|
---|
178 | {
|
---|
179 | t = -1.0E10;
|
---|
180 | }
|
---|
181 | else
|
---|
182 | {
|
---|
183 | t = r*Math.Sqrt((n-2)/(1-AP.Math.Sqr(r)));
|
---|
184 | }
|
---|
185 | }
|
---|
186 | if( (double)(t)<(double)(0) )
|
---|
187 | {
|
---|
188 | p = spearmantail(t, n);
|
---|
189 | bothtails = 2*p;
|
---|
190 | lefttail = p;
|
---|
191 | righttail = 1-p;
|
---|
192 | }
|
---|
193 | else
|
---|
194 | {
|
---|
195 | p = spearmantail(-t, n);
|
---|
196 | bothtails = 2*p;
|
---|
197 | lefttail = 1-p;
|
---|
198 | righttail = p;
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 |
|
---|
203 | /*************************************************************************
|
---|
204 | Tail(S, 5)
|
---|
205 | *************************************************************************/
|
---|
206 | private static double spearmantail5(double s)
|
---|
207 | {
|
---|
208 | double result = 0;
|
---|
209 |
|
---|
210 | if( (double)(s)<(double)(0.000e+00) )
|
---|
211 | {
|
---|
212 | result = studenttdistr.studenttdistribution(3, -s);
|
---|
213 | return result;
|
---|
214 | }
|
---|
215 | if( (double)(s)>=(double)(3.580e+00) )
|
---|
216 | {
|
---|
217 | result = 8.304e-03;
|
---|
218 | return result;
|
---|
219 | }
|
---|
220 | if( (double)(s)>=(double)(2.322e+00) )
|
---|
221 | {
|
---|
222 | result = 4.163e-02;
|
---|
223 | return result;
|
---|
224 | }
|
---|
225 | if( (double)(s)>=(double)(1.704e+00) )
|
---|
226 | {
|
---|
227 | result = 6.641e-02;
|
---|
228 | return result;
|
---|
229 | }
|
---|
230 | if( (double)(s)>=(double)(1.303e+00) )
|
---|
231 | {
|
---|
232 | result = 1.164e-01;
|
---|
233 | return result;
|
---|
234 | }
|
---|
235 | if( (double)(s)>=(double)(1.003e+00) )
|
---|
236 | {
|
---|
237 | result = 1.748e-01;
|
---|
238 | return result;
|
---|
239 | }
|
---|
240 | if( (double)(s)>=(double)(7.584e-01) )
|
---|
241 | {
|
---|
242 | result = 2.249e-01;
|
---|
243 | return result;
|
---|
244 | }
|
---|
245 | if( (double)(s)>=(double)(5.468e-01) )
|
---|
246 | {
|
---|
247 | result = 2.581e-01;
|
---|
248 | return result;
|
---|
249 | }
|
---|
250 | if( (double)(s)>=(double)(3.555e-01) )
|
---|
251 | {
|
---|
252 | result = 3.413e-01;
|
---|
253 | return result;
|
---|
254 | }
|
---|
255 | if( (double)(s)>=(double)(1.759e-01) )
|
---|
256 | {
|
---|
257 | result = 3.911e-01;
|
---|
258 | return result;
|
---|
259 | }
|
---|
260 | if( (double)(s)>=(double)(1.741e-03) )
|
---|
261 | {
|
---|
262 | result = 4.747e-01;
|
---|
263 | return result;
|
---|
264 | }
|
---|
265 | if( (double)(s)>=(double)(0.000e+00) )
|
---|
266 | {
|
---|
267 | result = 5.248e-01;
|
---|
268 | return result;
|
---|
269 | }
|
---|
270 | result = 0;
|
---|
271 | return result;
|
---|
272 | }
|
---|
273 |
|
---|
274 |
|
---|
275 | /*************************************************************************
|
---|
276 | Tail(S, 6)
|
---|
277 | *************************************************************************/
|
---|
278 | private static double spearmantail6(double s)
|
---|
279 | {
|
---|
280 | double result = 0;
|
---|
281 |
|
---|
282 | if( (double)(s)<(double)(1.001e+00) )
|
---|
283 | {
|
---|
284 | result = studenttdistr.studenttdistribution(4, -s);
|
---|
285 | return result;
|
---|
286 | }
|
---|
287 | if( (double)(s)>=(double)(5.663e+00) )
|
---|
288 | {
|
---|
289 | result = 1.366e-03;
|
---|
290 | return result;
|
---|
291 | }
|
---|
292 | if( (double)(s)>=(double)(3.834e+00) )
|
---|
293 | {
|
---|
294 | result = 8.350e-03;
|
---|
295 | return result;
|
---|
296 | }
|
---|
297 | if( (double)(s)>=(double)(2.968e+00) )
|
---|
298 | {
|
---|
299 | result = 1.668e-02;
|
---|
300 | return result;
|
---|
301 | }
|
---|
302 | if( (double)(s)>=(double)(2.430e+00) )
|
---|
303 | {
|
---|
304 | result = 2.921e-02;
|
---|
305 | return result;
|
---|
306 | }
|
---|
307 | if( (double)(s)>=(double)(2.045e+00) )
|
---|
308 | {
|
---|
309 | result = 5.144e-02;
|
---|
310 | return result;
|
---|
311 | }
|
---|
312 | if( (double)(s)>=(double)(1.747e+00) )
|
---|
313 | {
|
---|
314 | result = 6.797e-02;
|
---|
315 | return result;
|
---|
316 | }
|
---|
317 | if( (double)(s)>=(double)(1.502e+00) )
|
---|
318 | {
|
---|
319 | result = 8.752e-02;
|
---|
320 | return result;
|
---|
321 | }
|
---|
322 | if( (double)(s)>=(double)(1.295e+00) )
|
---|
323 | {
|
---|
324 | result = 1.210e-01;
|
---|
325 | return result;
|
---|
326 | }
|
---|
327 | if( (double)(s)>=(double)(1.113e+00) )
|
---|
328 | {
|
---|
329 | result = 1.487e-01;
|
---|
330 | return result;
|
---|
331 | }
|
---|
332 | if( (double)(s)>=(double)(1.001e+00) )
|
---|
333 | {
|
---|
334 | result = 1.780e-01;
|
---|
335 | return result;
|
---|
336 | }
|
---|
337 | result = 0;
|
---|
338 | return result;
|
---|
339 | }
|
---|
340 |
|
---|
341 |
|
---|
342 | /*************************************************************************
|
---|
343 | Tail(S, 7)
|
---|
344 | *************************************************************************/
|
---|
345 | private static double spearmantail7(double s)
|
---|
346 | {
|
---|
347 | double result = 0;
|
---|
348 |
|
---|
349 | if( (double)(s)<(double)(1.001e+00) )
|
---|
350 | {
|
---|
351 | result = studenttdistr.studenttdistribution(5, -s);
|
---|
352 | return result;
|
---|
353 | }
|
---|
354 | if( (double)(s)>=(double)(8.159e+00) )
|
---|
355 | {
|
---|
356 | result = 2.081e-04;
|
---|
357 | return result;
|
---|
358 | }
|
---|
359 | if( (double)(s)>=(double)(5.620e+00) )
|
---|
360 | {
|
---|
361 | result = 1.393e-03;
|
---|
362 | return result;
|
---|
363 | }
|
---|
364 | if( (double)(s)>=(double)(4.445e+00) )
|
---|
365 | {
|
---|
366 | result = 3.398e-03;
|
---|
367 | return result;
|
---|
368 | }
|
---|
369 | if( (double)(s)>=(double)(3.728e+00) )
|
---|
370 | {
|
---|
371 | result = 6.187e-03;
|
---|
372 | return result;
|
---|
373 | }
|
---|
374 | if( (double)(s)>=(double)(3.226e+00) )
|
---|
375 | {
|
---|
376 | result = 1.200e-02;
|
---|
377 | return result;
|
---|
378 | }
|
---|
379 | if( (double)(s)>=(double)(2.844e+00) )
|
---|
380 | {
|
---|
381 | result = 1.712e-02;
|
---|
382 | return result;
|
---|
383 | }
|
---|
384 | if( (double)(s)>=(double)(2.539e+00) )
|
---|
385 | {
|
---|
386 | result = 2.408e-02;
|
---|
387 | return result;
|
---|
388 | }
|
---|
389 | if( (double)(s)>=(double)(2.285e+00) )
|
---|
390 | {
|
---|
391 | result = 3.320e-02;
|
---|
392 | return result;
|
---|
393 | }
|
---|
394 | if( (double)(s)>=(double)(2.068e+00) )
|
---|
395 | {
|
---|
396 | result = 4.406e-02;
|
---|
397 | return result;
|
---|
398 | }
|
---|
399 | if( (double)(s)>=(double)(1.879e+00) )
|
---|
400 | {
|
---|
401 | result = 5.478e-02;
|
---|
402 | return result;
|
---|
403 | }
|
---|
404 | if( (double)(s)>=(double)(1.710e+00) )
|
---|
405 | {
|
---|
406 | result = 6.946e-02;
|
---|
407 | return result;
|
---|
408 | }
|
---|
409 | if( (double)(s)>=(double)(1.559e+00) )
|
---|
410 | {
|
---|
411 | result = 8.331e-02;
|
---|
412 | return result;
|
---|
413 | }
|
---|
414 | if( (double)(s)>=(double)(1.420e+00) )
|
---|
415 | {
|
---|
416 | result = 1.001e-01;
|
---|
417 | return result;
|
---|
418 | }
|
---|
419 | if( (double)(s)>=(double)(1.292e+00) )
|
---|
420 | {
|
---|
421 | result = 1.180e-01;
|
---|
422 | return result;
|
---|
423 | }
|
---|
424 | if( (double)(s)>=(double)(1.173e+00) )
|
---|
425 | {
|
---|
426 | result = 1.335e-01;
|
---|
427 | return result;
|
---|
428 | }
|
---|
429 | if( (double)(s)>=(double)(1.062e+00) )
|
---|
430 | {
|
---|
431 | result = 1.513e-01;
|
---|
432 | return result;
|
---|
433 | }
|
---|
434 | if( (double)(s)>=(double)(1.001e+00) )
|
---|
435 | {
|
---|
436 | result = 1.770e-01;
|
---|
437 | return result;
|
---|
438 | }
|
---|
439 | result = 0;
|
---|
440 | return result;
|
---|
441 | }
|
---|
442 |
|
---|
443 |
|
---|
444 | /*************************************************************************
|
---|
445 | Tail(S, 8)
|
---|
446 | *************************************************************************/
|
---|
447 | private static double spearmantail8(double s)
|
---|
448 | {
|
---|
449 | double result = 0;
|
---|
450 |
|
---|
451 | if( (double)(s)<(double)(2.001e+00) )
|
---|
452 | {
|
---|
453 | result = studenttdistr.studenttdistribution(6, -s);
|
---|
454 | return result;
|
---|
455 | }
|
---|
456 | if( (double)(s)>=(double)(1.103e+01) )
|
---|
457 | {
|
---|
458 | result = 2.194e-05;
|
---|
459 | return result;
|
---|
460 | }
|
---|
461 | if( (double)(s)>=(double)(7.685e+00) )
|
---|
462 | {
|
---|
463 | result = 2.008e-04;
|
---|
464 | return result;
|
---|
465 | }
|
---|
466 | if( (double)(s)>=(double)(6.143e+00) )
|
---|
467 | {
|
---|
468 | result = 5.686e-04;
|
---|
469 | return result;
|
---|
470 | }
|
---|
471 | if( (double)(s)>=(double)(5.213e+00) )
|
---|
472 | {
|
---|
473 | result = 1.138e-03;
|
---|
474 | return result;
|
---|
475 | }
|
---|
476 | if( (double)(s)>=(double)(4.567e+00) )
|
---|
477 | {
|
---|
478 | result = 2.310e-03;
|
---|
479 | return result;
|
---|
480 | }
|
---|
481 | if( (double)(s)>=(double)(4.081e+00) )
|
---|
482 | {
|
---|
483 | result = 3.634e-03;
|
---|
484 | return result;
|
---|
485 | }
|
---|
486 | if( (double)(s)>=(double)(3.697e+00) )
|
---|
487 | {
|
---|
488 | result = 5.369e-03;
|
---|
489 | return result;
|
---|
490 | }
|
---|
491 | if( (double)(s)>=(double)(3.381e+00) )
|
---|
492 | {
|
---|
493 | result = 7.708e-03;
|
---|
494 | return result;
|
---|
495 | }
|
---|
496 | if( (double)(s)>=(double)(3.114e+00) )
|
---|
497 | {
|
---|
498 | result = 1.087e-02;
|
---|
499 | return result;
|
---|
500 | }
|
---|
501 | if( (double)(s)>=(double)(2.884e+00) )
|
---|
502 | {
|
---|
503 | result = 1.397e-02;
|
---|
504 | return result;
|
---|
505 | }
|
---|
506 | if( (double)(s)>=(double)(2.682e+00) )
|
---|
507 | {
|
---|
508 | result = 1.838e-02;
|
---|
509 | return result;
|
---|
510 | }
|
---|
511 | if( (double)(s)>=(double)(2.502e+00) )
|
---|
512 | {
|
---|
513 | result = 2.288e-02;
|
---|
514 | return result;
|
---|
515 | }
|
---|
516 | if( (double)(s)>=(double)(2.340e+00) )
|
---|
517 | {
|
---|
518 | result = 2.883e-02;
|
---|
519 | return result;
|
---|
520 | }
|
---|
521 | if( (double)(s)>=(double)(2.192e+00) )
|
---|
522 | {
|
---|
523 | result = 3.469e-02;
|
---|
524 | return result;
|
---|
525 | }
|
---|
526 | if( (double)(s)>=(double)(2.057e+00) )
|
---|
527 | {
|
---|
528 | result = 4.144e-02;
|
---|
529 | return result;
|
---|
530 | }
|
---|
531 | if( (double)(s)>=(double)(2.001e+00) )
|
---|
532 | {
|
---|
533 | result = 4.804e-02;
|
---|
534 | return result;
|
---|
535 | }
|
---|
536 | result = 0;
|
---|
537 | return result;
|
---|
538 | }
|
---|
539 |
|
---|
540 |
|
---|
541 | /*************************************************************************
|
---|
542 | Tail(S, 9)
|
---|
543 | *************************************************************************/
|
---|
544 | private static double spearmantail9(double s)
|
---|
545 | {
|
---|
546 | double result = 0;
|
---|
547 |
|
---|
548 | if( (double)(s)<(double)(2.001e+00) )
|
---|
549 | {
|
---|
550 | result = studenttdistr.studenttdistribution(7, -s);
|
---|
551 | return result;
|
---|
552 | }
|
---|
553 | if( (double)(s)>=(double)(9.989e+00) )
|
---|
554 | {
|
---|
555 | result = 2.306e-05;
|
---|
556 | return result;
|
---|
557 | }
|
---|
558 | if( (double)(s)>=(double)(8.069e+00) )
|
---|
559 | {
|
---|
560 | result = 8.167e-05;
|
---|
561 | return result;
|
---|
562 | }
|
---|
563 | if( (double)(s)>=(double)(6.890e+00) )
|
---|
564 | {
|
---|
565 | result = 1.744e-04;
|
---|
566 | return result;
|
---|
567 | }
|
---|
568 | if( (double)(s)>=(double)(6.077e+00) )
|
---|
569 | {
|
---|
570 | result = 3.625e-04;
|
---|
571 | return result;
|
---|
572 | }
|
---|
573 | if( (double)(s)>=(double)(5.469e+00) )
|
---|
574 | {
|
---|
575 | result = 6.450e-04;
|
---|
576 | return result;
|
---|
577 | }
|
---|
578 | if( (double)(s)>=(double)(4.991e+00) )
|
---|
579 | {
|
---|
580 | result = 1.001e-03;
|
---|
581 | return result;
|
---|
582 | }
|
---|
583 | if( (double)(s)>=(double)(4.600e+00) )
|
---|
584 | {
|
---|
585 | result = 1.514e-03;
|
---|
586 | return result;
|
---|
587 | }
|
---|
588 | if( (double)(s)>=(double)(4.272e+00) )
|
---|
589 | {
|
---|
590 | result = 2.213e-03;
|
---|
591 | return result;
|
---|
592 | }
|
---|
593 | if( (double)(s)>=(double)(3.991e+00) )
|
---|
594 | {
|
---|
595 | result = 2.990e-03;
|
---|
596 | return result;
|
---|
597 | }
|
---|
598 | if( (double)(s)>=(double)(3.746e+00) )
|
---|
599 | {
|
---|
600 | result = 4.101e-03;
|
---|
601 | return result;
|
---|
602 | }
|
---|
603 | if( (double)(s)>=(double)(3.530e+00) )
|
---|
604 | {
|
---|
605 | result = 5.355e-03;
|
---|
606 | return result;
|
---|
607 | }
|
---|
608 | if( (double)(s)>=(double)(3.336e+00) )
|
---|
609 | {
|
---|
610 | result = 6.887e-03;
|
---|
611 | return result;
|
---|
612 | }
|
---|
613 | if( (double)(s)>=(double)(3.161e+00) )
|
---|
614 | {
|
---|
615 | result = 8.598e-03;
|
---|
616 | return result;
|
---|
617 | }
|
---|
618 | if( (double)(s)>=(double)(3.002e+00) )
|
---|
619 | {
|
---|
620 | result = 1.065e-02;
|
---|
621 | return result;
|
---|
622 | }
|
---|
623 | if( (double)(s)>=(double)(2.855e+00) )
|
---|
624 | {
|
---|
625 | result = 1.268e-02;
|
---|
626 | return result;
|
---|
627 | }
|
---|
628 | if( (double)(s)>=(double)(2.720e+00) )
|
---|
629 | {
|
---|
630 | result = 1.552e-02;
|
---|
631 | return result;
|
---|
632 | }
|
---|
633 | if( (double)(s)>=(double)(2.595e+00) )
|
---|
634 | {
|
---|
635 | result = 1.836e-02;
|
---|
636 | return result;
|
---|
637 | }
|
---|
638 | if( (double)(s)>=(double)(2.477e+00) )
|
---|
639 | {
|
---|
640 | result = 2.158e-02;
|
---|
641 | return result;
|
---|
642 | }
|
---|
643 | if( (double)(s)>=(double)(2.368e+00) )
|
---|
644 | {
|
---|
645 | result = 2.512e-02;
|
---|
646 | return result;
|
---|
647 | }
|
---|
648 | if( (double)(s)>=(double)(2.264e+00) )
|
---|
649 | {
|
---|
650 | result = 2.942e-02;
|
---|
651 | return result;
|
---|
652 | }
|
---|
653 | if( (double)(s)>=(double)(2.166e+00) )
|
---|
654 | {
|
---|
655 | result = 3.325e-02;
|
---|
656 | return result;
|
---|
657 | }
|
---|
658 | if( (double)(s)>=(double)(2.073e+00) )
|
---|
659 | {
|
---|
660 | result = 3.800e-02;
|
---|
661 | return result;
|
---|
662 | }
|
---|
663 | if( (double)(s)>=(double)(2.001e+00) )
|
---|
664 | {
|
---|
665 | result = 4.285e-02;
|
---|
666 | return result;
|
---|
667 | }
|
---|
668 | result = 0;
|
---|
669 | return result;
|
---|
670 | }
|
---|
671 |
|
---|
672 |
|
---|
673 | /*************************************************************************
|
---|
674 | Tail(T,N), accepts T<0
|
---|
675 | *************************************************************************/
|
---|
676 | private static double spearmantail(double t,
|
---|
677 | int n)
|
---|
678 | {
|
---|
679 | double result = 0;
|
---|
680 |
|
---|
681 | if( n==5 )
|
---|
682 | {
|
---|
683 | result = spearmantail5(-t);
|
---|
684 | return result;
|
---|
685 | }
|
---|
686 | if( n==6 )
|
---|
687 | {
|
---|
688 | result = spearmantail6(-t);
|
---|
689 | return result;
|
---|
690 | }
|
---|
691 | if( n==7 )
|
---|
692 | {
|
---|
693 | result = spearmantail7(-t);
|
---|
694 | return result;
|
---|
695 | }
|
---|
696 | if( n==8 )
|
---|
697 | {
|
---|
698 | result = spearmantail8(-t);
|
---|
699 | return result;
|
---|
700 | }
|
---|
701 | if( n==9 )
|
---|
702 | {
|
---|
703 | result = spearmantail9(-t);
|
---|
704 | return result;
|
---|
705 | }
|
---|
706 | result = studenttdistr.studenttdistribution(n-2, t);
|
---|
707 | return result;
|
---|
708 | }
|
---|
709 | }
|
---|
710 | }
|
---|