1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class corr
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | 1-dimensional complex cross-correlation.
|
---|
29 |
|
---|
30 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
31 |
|
---|
32 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
33 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
34 | about performance).
|
---|
35 |
|
---|
36 | IMPORTANT:
|
---|
37 | for historical reasons subroutine accepts its parameters in reversed
|
---|
38 | order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
39 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
40 |
|
---|
41 | INPUT PARAMETERS
|
---|
42 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
43 | signal containing pattern
|
---|
44 | N - problem size
|
---|
45 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
46 | pattern to search withing signal
|
---|
47 | M - problem size
|
---|
48 |
|
---|
49 | OUTPUT PARAMETERS
|
---|
50 | R - cross-correlation, array[0..N+M-2]:
|
---|
51 | * positive lags are stored in R[0..N-1],
|
---|
52 | R[i] = sum(conj(pattern[j])*signal[i+j]
|
---|
53 | * negative lags are stored in R[N..N+M-2],
|
---|
54 | R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
|
---|
55 |
|
---|
56 | NOTE:
|
---|
57 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
58 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
59 |
|
---|
60 | -- ALGLIB --
|
---|
61 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
62 | *************************************************************************/
|
---|
63 | public static void corrc1d(ref AP.Complex[] signal,
|
---|
64 | int n,
|
---|
65 | ref AP.Complex[] pattern,
|
---|
66 | int m,
|
---|
67 | ref AP.Complex[] r)
|
---|
68 | {
|
---|
69 | AP.Complex[] p = new AP.Complex[0];
|
---|
70 | AP.Complex[] b = new AP.Complex[0];
|
---|
71 | int i = 0;
|
---|
72 | int i_ = 0;
|
---|
73 | int i1_ = 0;
|
---|
74 |
|
---|
75 | System.Diagnostics.Debug.Assert(n>0 & m>0, "CorrC1D: incorrect N or M!");
|
---|
76 | p = new AP.Complex[m];
|
---|
77 | for(i=0; i<=m-1; i++)
|
---|
78 | {
|
---|
79 | p[m-1-i] = AP.Math.Conj(pattern[i]);
|
---|
80 | }
|
---|
81 | conv.convc1d(ref p, m, ref signal, n, ref b);
|
---|
82 | r = new AP.Complex[m+n-1];
|
---|
83 | i1_ = (m-1) - (0);
|
---|
84 | for(i_=0; i_<=n-1;i_++)
|
---|
85 | {
|
---|
86 | r[i_] = b[i_+i1_];
|
---|
87 | }
|
---|
88 | if( m+n-2>=n )
|
---|
89 | {
|
---|
90 | i1_ = (0) - (n);
|
---|
91 | for(i_=n; i_<=m+n-2;i_++)
|
---|
92 | {
|
---|
93 | r[i_] = b[i_+i1_];
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 |
|
---|
99 | /*************************************************************************
|
---|
100 | 1-dimensional circular complex cross-correlation.
|
---|
101 |
|
---|
102 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
103 | Algorithm has linearithmic complexity for any M/N.
|
---|
104 |
|
---|
105 | IMPORTANT:
|
---|
106 | for historical reasons subroutine accepts its parameters in reversed
|
---|
107 | order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
108 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
109 | as "x").
|
---|
110 |
|
---|
111 | INPUT PARAMETERS
|
---|
112 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
113 | periodic signal containing pattern
|
---|
114 | N - problem size
|
---|
115 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
116 | non-periodic pattern to search withing signal
|
---|
117 | M - problem size
|
---|
118 |
|
---|
119 | OUTPUT PARAMETERS
|
---|
120 | R - convolution: A*B. array[0..M-1].
|
---|
121 |
|
---|
122 |
|
---|
123 | -- ALGLIB --
|
---|
124 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
125 | *************************************************************************/
|
---|
126 | public static void corrc1dcircular(ref AP.Complex[] signal,
|
---|
127 | int m,
|
---|
128 | ref AP.Complex[] pattern,
|
---|
129 | int n,
|
---|
130 | ref AP.Complex[] c)
|
---|
131 | {
|
---|
132 | AP.Complex[] p = new AP.Complex[0];
|
---|
133 | AP.Complex[] b = new AP.Complex[0];
|
---|
134 | int i1 = 0;
|
---|
135 | int i2 = 0;
|
---|
136 | int i = 0;
|
---|
137 | int j2 = 0;
|
---|
138 | int i_ = 0;
|
---|
139 | int i1_ = 0;
|
---|
140 |
|
---|
141 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
142 |
|
---|
143 | //
|
---|
144 | // normalize task: make M>=N,
|
---|
145 | // so A will be longer (at least - not shorter) that B.
|
---|
146 | //
|
---|
147 | if( m<n )
|
---|
148 | {
|
---|
149 | b = new AP.Complex[m];
|
---|
150 | for(i1=0; i1<=m-1; i1++)
|
---|
151 | {
|
---|
152 | b[i1] = 0;
|
---|
153 | }
|
---|
154 | i1 = 0;
|
---|
155 | while( i1<n )
|
---|
156 | {
|
---|
157 | i2 = Math.Min(i1+m-1, n-1);
|
---|
158 | j2 = i2-i1;
|
---|
159 | i1_ = (i1) - (0);
|
---|
160 | for(i_=0; i_<=j2;i_++)
|
---|
161 | {
|
---|
162 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
163 | }
|
---|
164 | i1 = i1+m;
|
---|
165 | }
|
---|
166 | corrc1dcircular(ref signal, m, ref b, m, ref c);
|
---|
167 | return;
|
---|
168 | }
|
---|
169 |
|
---|
170 | //
|
---|
171 | // Task is normalized
|
---|
172 | //
|
---|
173 | p = new AP.Complex[n];
|
---|
174 | for(i=0; i<=n-1; i++)
|
---|
175 | {
|
---|
176 | p[n-1-i] = AP.Math.Conj(pattern[i]);
|
---|
177 | }
|
---|
178 | conv.convc1dcircular(ref signal, m, ref p, n, ref b);
|
---|
179 | c = new AP.Complex[m];
|
---|
180 | i1_ = (n-1) - (0);
|
---|
181 | for(i_=0; i_<=m-n;i_++)
|
---|
182 | {
|
---|
183 | c[i_] = b[i_+i1_];
|
---|
184 | }
|
---|
185 | if( m-n+1<=m-1 )
|
---|
186 | {
|
---|
187 | i1_ = (0) - (m-n+1);
|
---|
188 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
189 | {
|
---|
190 | c[i_] = b[i_+i1_];
|
---|
191 | }
|
---|
192 | }
|
---|
193 | }
|
---|
194 |
|
---|
195 |
|
---|
196 | /*************************************************************************
|
---|
197 | 1-dimensional real cross-correlation.
|
---|
198 |
|
---|
199 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
200 |
|
---|
201 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
202 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
203 | about performance).
|
---|
204 |
|
---|
205 | IMPORTANT:
|
---|
206 | for historical reasons subroutine accepts its parameters in reversed
|
---|
207 | order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
208 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
209 |
|
---|
210 | INPUT PARAMETERS
|
---|
211 | Signal - array[0..N-1] - real function to be transformed,
|
---|
212 | signal containing pattern
|
---|
213 | N - problem size
|
---|
214 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
215 | pattern to search withing signal
|
---|
216 | M - problem size
|
---|
217 |
|
---|
218 | OUTPUT PARAMETERS
|
---|
219 | R - cross-correlation, array[0..N+M-2]:
|
---|
220 | * positive lags are stored in R[0..N-1],
|
---|
221 | R[i] = sum(pattern[j]*signal[i+j]
|
---|
222 | * negative lags are stored in R[N..N+M-2],
|
---|
223 | R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
|
---|
224 |
|
---|
225 | NOTE:
|
---|
226 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
227 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
228 |
|
---|
229 | -- ALGLIB --
|
---|
230 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
231 | *************************************************************************/
|
---|
232 | public static void corrr1d(ref double[] signal,
|
---|
233 | int n,
|
---|
234 | ref double[] pattern,
|
---|
235 | int m,
|
---|
236 | ref double[] r)
|
---|
237 | {
|
---|
238 | double[] p = new double[0];
|
---|
239 | double[] b = new double[0];
|
---|
240 | int i = 0;
|
---|
241 | int i_ = 0;
|
---|
242 | int i1_ = 0;
|
---|
243 |
|
---|
244 | System.Diagnostics.Debug.Assert(n>0 & m>0, "CorrR1D: incorrect N or M!");
|
---|
245 | p = new double[m];
|
---|
246 | for(i=0; i<=m-1; i++)
|
---|
247 | {
|
---|
248 | p[m-1-i] = pattern[i];
|
---|
249 | }
|
---|
250 | conv.convr1d(ref p, m, ref signal, n, ref b);
|
---|
251 | r = new double[m+n-1];
|
---|
252 | i1_ = (m-1) - (0);
|
---|
253 | for(i_=0; i_<=n-1;i_++)
|
---|
254 | {
|
---|
255 | r[i_] = b[i_+i1_];
|
---|
256 | }
|
---|
257 | if( m+n-2>=n )
|
---|
258 | {
|
---|
259 | i1_ = (0) - (n);
|
---|
260 | for(i_=n; i_<=m+n-2;i_++)
|
---|
261 | {
|
---|
262 | r[i_] = b[i_+i1_];
|
---|
263 | }
|
---|
264 | }
|
---|
265 | }
|
---|
266 |
|
---|
267 |
|
---|
268 | /*************************************************************************
|
---|
269 | 1-dimensional circular real cross-correlation.
|
---|
270 |
|
---|
271 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
272 | Algorithm has linearithmic complexity for any M/N.
|
---|
273 |
|
---|
274 | IMPORTANT:
|
---|
275 | for historical reasons subroutine accepts its parameters in reversed
|
---|
276 | order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
277 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
278 | as "x").
|
---|
279 |
|
---|
280 | INPUT PARAMETERS
|
---|
281 | Signal - array[0..N-1] - real function to be transformed,
|
---|
282 | periodic signal containing pattern
|
---|
283 | N - problem size
|
---|
284 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
285 | non-periodic pattern to search withing signal
|
---|
286 | M - problem size
|
---|
287 |
|
---|
288 | OUTPUT PARAMETERS
|
---|
289 | R - convolution: A*B. array[0..M-1].
|
---|
290 |
|
---|
291 |
|
---|
292 | -- ALGLIB --
|
---|
293 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
294 | *************************************************************************/
|
---|
295 | public static void corrr1dcircular(ref double[] signal,
|
---|
296 | int m,
|
---|
297 | ref double[] pattern,
|
---|
298 | int n,
|
---|
299 | ref double[] c)
|
---|
300 | {
|
---|
301 | double[] p = new double[0];
|
---|
302 | double[] b = new double[0];
|
---|
303 | int i1 = 0;
|
---|
304 | int i2 = 0;
|
---|
305 | int i = 0;
|
---|
306 | int j2 = 0;
|
---|
307 | int i_ = 0;
|
---|
308 | int i1_ = 0;
|
---|
309 |
|
---|
310 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
311 |
|
---|
312 | //
|
---|
313 | // normalize task: make M>=N,
|
---|
314 | // so A will be longer (at least - not shorter) that B.
|
---|
315 | //
|
---|
316 | if( m<n )
|
---|
317 | {
|
---|
318 | b = new double[m];
|
---|
319 | for(i1=0; i1<=m-1; i1++)
|
---|
320 | {
|
---|
321 | b[i1] = 0;
|
---|
322 | }
|
---|
323 | i1 = 0;
|
---|
324 | while( i1<n )
|
---|
325 | {
|
---|
326 | i2 = Math.Min(i1+m-1, n-1);
|
---|
327 | j2 = i2-i1;
|
---|
328 | i1_ = (i1) - (0);
|
---|
329 | for(i_=0; i_<=j2;i_++)
|
---|
330 | {
|
---|
331 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
332 | }
|
---|
333 | i1 = i1+m;
|
---|
334 | }
|
---|
335 | corrr1dcircular(ref signal, m, ref b, m, ref c);
|
---|
336 | return;
|
---|
337 | }
|
---|
338 |
|
---|
339 | //
|
---|
340 | // Task is normalized
|
---|
341 | //
|
---|
342 | p = new double[n];
|
---|
343 | for(i=0; i<=n-1; i++)
|
---|
344 | {
|
---|
345 | p[n-1-i] = pattern[i];
|
---|
346 | }
|
---|
347 | conv.convr1dcircular(ref signal, m, ref p, n, ref b);
|
---|
348 | c = new double[m];
|
---|
349 | i1_ = (n-1) - (0);
|
---|
350 | for(i_=0; i_<=m-n;i_++)
|
---|
351 | {
|
---|
352 | c[i_] = b[i_+i1_];
|
---|
353 | }
|
---|
354 | if( m-n+1<=m-1 )
|
---|
355 | {
|
---|
356 | i1_ = (0) - (m-n+1);
|
---|
357 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
358 | {
|
---|
359 | c[i_] = b[i_+i1_];
|
---|
360 | }
|
---|
361 | }
|
---|
362 | }
|
---|
363 | }
|
---|
364 | }
|
---|