[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class corr
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | 1-dimensional complex cross-correlation.
|
---|
| 29 |
|
---|
| 30 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
| 31 |
|
---|
| 32 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
| 33 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
| 34 | about performance).
|
---|
| 35 |
|
---|
| 36 | IMPORTANT:
|
---|
| 37 | for historical reasons subroutine accepts its parameters in reversed
|
---|
| 38 | order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
| 39 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
| 40 |
|
---|
| 41 | INPUT PARAMETERS
|
---|
| 42 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
| 43 | signal containing pattern
|
---|
| 44 | N - problem size
|
---|
| 45 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
| 46 | pattern to search withing signal
|
---|
| 47 | M - problem size
|
---|
| 48 |
|
---|
| 49 | OUTPUT PARAMETERS
|
---|
| 50 | R - cross-correlation, array[0..N+M-2]:
|
---|
| 51 | * positive lags are stored in R[0..N-1],
|
---|
| 52 | R[i] = sum(conj(pattern[j])*signal[i+j]
|
---|
| 53 | * negative lags are stored in R[N..N+M-2],
|
---|
| 54 | R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j]
|
---|
| 55 |
|
---|
| 56 | NOTE:
|
---|
| 57 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
| 58 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
| 59 |
|
---|
| 60 | -- ALGLIB --
|
---|
| 61 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 62 | *************************************************************************/
|
---|
| 63 | public static void corrc1d(ref AP.Complex[] signal,
|
---|
| 64 | int n,
|
---|
| 65 | ref AP.Complex[] pattern,
|
---|
| 66 | int m,
|
---|
| 67 | ref AP.Complex[] r)
|
---|
| 68 | {
|
---|
| 69 | AP.Complex[] p = new AP.Complex[0];
|
---|
| 70 | AP.Complex[] b = new AP.Complex[0];
|
---|
| 71 | int i = 0;
|
---|
| 72 | int i_ = 0;
|
---|
| 73 | int i1_ = 0;
|
---|
| 74 |
|
---|
| 75 | System.Diagnostics.Debug.Assert(n>0 & m>0, "CorrC1D: incorrect N or M!");
|
---|
| 76 | p = new AP.Complex[m];
|
---|
| 77 | for(i=0; i<=m-1; i++)
|
---|
| 78 | {
|
---|
| 79 | p[m-1-i] = AP.Math.Conj(pattern[i]);
|
---|
| 80 | }
|
---|
| 81 | conv.convc1d(ref p, m, ref signal, n, ref b);
|
---|
| 82 | r = new AP.Complex[m+n-1];
|
---|
| 83 | i1_ = (m-1) - (0);
|
---|
| 84 | for(i_=0; i_<=n-1;i_++)
|
---|
| 85 | {
|
---|
| 86 | r[i_] = b[i_+i1_];
|
---|
| 87 | }
|
---|
| 88 | if( m+n-2>=n )
|
---|
| 89 | {
|
---|
| 90 | i1_ = (0) - (n);
|
---|
| 91 | for(i_=n; i_<=m+n-2;i_++)
|
---|
| 92 | {
|
---|
| 93 | r[i_] = b[i_+i1_];
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /*************************************************************************
|
---|
| 100 | 1-dimensional circular complex cross-correlation.
|
---|
| 101 |
|
---|
| 102 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
| 103 | Algorithm has linearithmic complexity for any M/N.
|
---|
| 104 |
|
---|
| 105 | IMPORTANT:
|
---|
| 106 | for historical reasons subroutine accepts its parameters in reversed
|
---|
| 107 | order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
| 108 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
| 109 | as "x").
|
---|
| 110 |
|
---|
| 111 | INPUT PARAMETERS
|
---|
| 112 | Signal - array[0..N-1] - complex function to be transformed,
|
---|
| 113 | periodic signal containing pattern
|
---|
| 114 | N - problem size
|
---|
| 115 | Pattern - array[0..M-1] - complex function to be transformed,
|
---|
| 116 | non-periodic pattern to search withing signal
|
---|
| 117 | M - problem size
|
---|
| 118 |
|
---|
| 119 | OUTPUT PARAMETERS
|
---|
| 120 | R - convolution: A*B. array[0..M-1].
|
---|
| 121 |
|
---|
| 122 |
|
---|
| 123 | -- ALGLIB --
|
---|
| 124 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 125 | *************************************************************************/
|
---|
| 126 | public static void corrc1dcircular(ref AP.Complex[] signal,
|
---|
| 127 | int m,
|
---|
| 128 | ref AP.Complex[] pattern,
|
---|
| 129 | int n,
|
---|
| 130 | ref AP.Complex[] c)
|
---|
| 131 | {
|
---|
| 132 | AP.Complex[] p = new AP.Complex[0];
|
---|
| 133 | AP.Complex[] b = new AP.Complex[0];
|
---|
| 134 | int i1 = 0;
|
---|
| 135 | int i2 = 0;
|
---|
| 136 | int i = 0;
|
---|
| 137 | int j2 = 0;
|
---|
| 138 | int i_ = 0;
|
---|
| 139 | int i1_ = 0;
|
---|
| 140 |
|
---|
| 141 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
| 142 |
|
---|
| 143 | //
|
---|
| 144 | // normalize task: make M>=N,
|
---|
| 145 | // so A will be longer (at least - not shorter) that B.
|
---|
| 146 | //
|
---|
| 147 | if( m<n )
|
---|
| 148 | {
|
---|
| 149 | b = new AP.Complex[m];
|
---|
| 150 | for(i1=0; i1<=m-1; i1++)
|
---|
| 151 | {
|
---|
| 152 | b[i1] = 0;
|
---|
| 153 | }
|
---|
| 154 | i1 = 0;
|
---|
| 155 | while( i1<n )
|
---|
| 156 | {
|
---|
| 157 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 158 | j2 = i2-i1;
|
---|
| 159 | i1_ = (i1) - (0);
|
---|
| 160 | for(i_=0; i_<=j2;i_++)
|
---|
| 161 | {
|
---|
| 162 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
| 163 | }
|
---|
| 164 | i1 = i1+m;
|
---|
| 165 | }
|
---|
| 166 | corrc1dcircular(ref signal, m, ref b, m, ref c);
|
---|
| 167 | return;
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | //
|
---|
| 171 | // Task is normalized
|
---|
| 172 | //
|
---|
| 173 | p = new AP.Complex[n];
|
---|
| 174 | for(i=0; i<=n-1; i++)
|
---|
| 175 | {
|
---|
| 176 | p[n-1-i] = AP.Math.Conj(pattern[i]);
|
---|
| 177 | }
|
---|
| 178 | conv.convc1dcircular(ref signal, m, ref p, n, ref b);
|
---|
| 179 | c = new AP.Complex[m];
|
---|
| 180 | i1_ = (n-1) - (0);
|
---|
| 181 | for(i_=0; i_<=m-n;i_++)
|
---|
| 182 | {
|
---|
| 183 | c[i_] = b[i_+i1_];
|
---|
| 184 | }
|
---|
| 185 | if( m-n+1<=m-1 )
|
---|
| 186 | {
|
---|
| 187 | i1_ = (0) - (m-n+1);
|
---|
| 188 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
| 189 | {
|
---|
| 190 | c[i_] = b[i_+i1_];
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 |
|
---|
| 196 | /*************************************************************************
|
---|
| 197 | 1-dimensional real cross-correlation.
|
---|
| 198 |
|
---|
| 199 | For given Pattern/Signal returns corr(Pattern,Signal) (non-circular).
|
---|
| 200 |
|
---|
| 201 | Correlation is calculated using reduction to convolution. Algorithm with
|
---|
| 202 | max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info
|
---|
| 203 | about performance).
|
---|
| 204 |
|
---|
| 205 | IMPORTANT:
|
---|
| 206 | for historical reasons subroutine accepts its parameters in reversed
|
---|
| 207 | order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional
|
---|
| 208 | definition of cross-correlation, denoting cross-correlation as "x").
|
---|
| 209 |
|
---|
| 210 | INPUT PARAMETERS
|
---|
| 211 | Signal - array[0..N-1] - real function to be transformed,
|
---|
| 212 | signal containing pattern
|
---|
| 213 | N - problem size
|
---|
| 214 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
| 215 | pattern to search withing signal
|
---|
| 216 | M - problem size
|
---|
| 217 |
|
---|
| 218 | OUTPUT PARAMETERS
|
---|
| 219 | R - cross-correlation, array[0..N+M-2]:
|
---|
| 220 | * positive lags are stored in R[0..N-1],
|
---|
| 221 | R[i] = sum(pattern[j]*signal[i+j]
|
---|
| 222 | * negative lags are stored in R[N..N+M-2],
|
---|
| 223 | R[N+M-1-i] = sum(pattern[j]*signal[-i+j]
|
---|
| 224 |
|
---|
| 225 | NOTE:
|
---|
| 226 | It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero
|
---|
| 227 | on [-K..M-1], you can still use this subroutine, just shift result by K.
|
---|
| 228 |
|
---|
| 229 | -- ALGLIB --
|
---|
| 230 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 231 | *************************************************************************/
|
---|
| 232 | public static void corrr1d(ref double[] signal,
|
---|
| 233 | int n,
|
---|
| 234 | ref double[] pattern,
|
---|
| 235 | int m,
|
---|
| 236 | ref double[] r)
|
---|
| 237 | {
|
---|
| 238 | double[] p = new double[0];
|
---|
| 239 | double[] b = new double[0];
|
---|
| 240 | int i = 0;
|
---|
| 241 | int i_ = 0;
|
---|
| 242 | int i1_ = 0;
|
---|
| 243 |
|
---|
| 244 | System.Diagnostics.Debug.Assert(n>0 & m>0, "CorrR1D: incorrect N or M!");
|
---|
| 245 | p = new double[m];
|
---|
| 246 | for(i=0; i<=m-1; i++)
|
---|
| 247 | {
|
---|
| 248 | p[m-1-i] = pattern[i];
|
---|
| 249 | }
|
---|
| 250 | conv.convr1d(ref p, m, ref signal, n, ref b);
|
---|
| 251 | r = new double[m+n-1];
|
---|
| 252 | i1_ = (m-1) - (0);
|
---|
| 253 | for(i_=0; i_<=n-1;i_++)
|
---|
| 254 | {
|
---|
| 255 | r[i_] = b[i_+i1_];
|
---|
| 256 | }
|
---|
| 257 | if( m+n-2>=n )
|
---|
| 258 | {
|
---|
| 259 | i1_ = (0) - (n);
|
---|
| 260 | for(i_=n; i_<=m+n-2;i_++)
|
---|
| 261 | {
|
---|
| 262 | r[i_] = b[i_+i1_];
|
---|
| 263 | }
|
---|
| 264 | }
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 |
|
---|
| 268 | /*************************************************************************
|
---|
| 269 | 1-dimensional circular real cross-correlation.
|
---|
| 270 |
|
---|
| 271 | For given Pattern/Signal returns corr(Pattern,Signal) (circular).
|
---|
| 272 | Algorithm has linearithmic complexity for any M/N.
|
---|
| 273 |
|
---|
| 274 | IMPORTANT:
|
---|
| 275 | for historical reasons subroutine accepts its parameters in reversed
|
---|
| 276 | order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using
|
---|
| 277 | traditional definition of cross-correlation, denoting cross-correlation
|
---|
| 278 | as "x").
|
---|
| 279 |
|
---|
| 280 | INPUT PARAMETERS
|
---|
| 281 | Signal - array[0..N-1] - real function to be transformed,
|
---|
| 282 | periodic signal containing pattern
|
---|
| 283 | N - problem size
|
---|
| 284 | Pattern - array[0..M-1] - real function to be transformed,
|
---|
| 285 | non-periodic pattern to search withing signal
|
---|
| 286 | M - problem size
|
---|
| 287 |
|
---|
| 288 | OUTPUT PARAMETERS
|
---|
| 289 | R - convolution: A*B. array[0..M-1].
|
---|
| 290 |
|
---|
| 291 |
|
---|
| 292 | -- ALGLIB --
|
---|
| 293 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
| 294 | *************************************************************************/
|
---|
| 295 | public static void corrr1dcircular(ref double[] signal,
|
---|
| 296 | int m,
|
---|
| 297 | ref double[] pattern,
|
---|
| 298 | int n,
|
---|
| 299 | ref double[] c)
|
---|
| 300 | {
|
---|
| 301 | double[] p = new double[0];
|
---|
| 302 | double[] b = new double[0];
|
---|
| 303 | int i1 = 0;
|
---|
| 304 | int i2 = 0;
|
---|
| 305 | int i = 0;
|
---|
| 306 | int j2 = 0;
|
---|
| 307 | int i_ = 0;
|
---|
| 308 | int i1_ = 0;
|
---|
| 309 |
|
---|
| 310 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
| 311 |
|
---|
| 312 | //
|
---|
| 313 | // normalize task: make M>=N,
|
---|
| 314 | // so A will be longer (at least - not shorter) that B.
|
---|
| 315 | //
|
---|
| 316 | if( m<n )
|
---|
| 317 | {
|
---|
| 318 | b = new double[m];
|
---|
| 319 | for(i1=0; i1<=m-1; i1++)
|
---|
| 320 | {
|
---|
| 321 | b[i1] = 0;
|
---|
| 322 | }
|
---|
| 323 | i1 = 0;
|
---|
| 324 | while( i1<n )
|
---|
| 325 | {
|
---|
| 326 | i2 = Math.Min(i1+m-1, n-1);
|
---|
| 327 | j2 = i2-i1;
|
---|
| 328 | i1_ = (i1) - (0);
|
---|
| 329 | for(i_=0; i_<=j2;i_++)
|
---|
| 330 | {
|
---|
| 331 | b[i_] = b[i_] + pattern[i_+i1_];
|
---|
| 332 | }
|
---|
| 333 | i1 = i1+m;
|
---|
| 334 | }
|
---|
| 335 | corrr1dcircular(ref signal, m, ref b, m, ref c);
|
---|
| 336 | return;
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | //
|
---|
| 340 | // Task is normalized
|
---|
| 341 | //
|
---|
| 342 | p = new double[n];
|
---|
| 343 | for(i=0; i<=n-1; i++)
|
---|
| 344 | {
|
---|
| 345 | p[n-1-i] = pattern[i];
|
---|
| 346 | }
|
---|
| 347 | conv.convr1dcircular(ref signal, m, ref p, n, ref b);
|
---|
| 348 | c = new double[m];
|
---|
| 349 | i1_ = (n-1) - (0);
|
---|
| 350 | for(i_=0; i_<=m-n;i_++)
|
---|
| 351 | {
|
---|
| 352 | c[i_] = b[i_+i1_];
|
---|
| 353 | }
|
---|
| 354 | if( m-n+1<=m-1 )
|
---|
| 355 | {
|
---|
| 356 | i1_ = (0) - (m-n+1);
|
---|
| 357 | for(i_=m-n+1; i_<=m-1;i_++)
|
---|
| 358 | {
|
---|
| 359 | c[i_] = b[i_+i1_];
|
---|
| 360 | }
|
---|
| 361 | }
|
---|
| 362 | }
|
---|
| 363 | }
|
---|
| 364 | }
|
---|