1 | /*************************************************************************
|
---|
2 | Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).
|
---|
3 |
|
---|
4 | >>> SOURCE LICENSE >>>
|
---|
5 | This program is free software; you can redistribute it and/or modify
|
---|
6 | it under the terms of the GNU General Public License as published by
|
---|
7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
8 | License, or (at your option) any later version.
|
---|
9 |
|
---|
10 | This program is distributed in the hope that it will be useful,
|
---|
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | GNU General Public License for more details.
|
---|
14 |
|
---|
15 | A copy of the GNU General Public License is available at
|
---|
16 | http://www.fsf.org/licensing/licenses
|
---|
17 |
|
---|
18 | >>> END OF LICENSE >>>
|
---|
19 | *************************************************************************/
|
---|
20 |
|
---|
21 | using System;
|
---|
22 |
|
---|
23 | namespace alglib
|
---|
24 | {
|
---|
25 | public class conv
|
---|
26 | {
|
---|
27 | /*************************************************************************
|
---|
28 | 1-dimensional complex convolution.
|
---|
29 |
|
---|
30 | For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
|
---|
31 | choose between three implementations: straightforward O(M*N) formula for
|
---|
32 | very small N (or M), overlap-add algorithm for cases where max(M,N) is
|
---|
33 | significantly larger than min(M,N), but O(M*N) algorithm is too slow, and
|
---|
34 | general FFT-based formula for cases where two previois algorithms are too
|
---|
35 | slow.
|
---|
36 |
|
---|
37 | Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.
|
---|
38 |
|
---|
39 | INPUT PARAMETERS
|
---|
40 | A - array[0..M-1] - complex function to be transformed
|
---|
41 | M - problem size
|
---|
42 | B - array[0..N-1] - complex function to be transformed
|
---|
43 | N - problem size
|
---|
44 |
|
---|
45 | OUTPUT PARAMETERS
|
---|
46 | R - convolution: A*B. array[0..N+M-2].
|
---|
47 |
|
---|
48 | NOTE:
|
---|
49 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
50 | functions have non-zero values at negative T's, you can still use this
|
---|
51 | subroutine - just shift its result correspondingly.
|
---|
52 |
|
---|
53 | -- ALGLIB --
|
---|
54 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
55 | *************************************************************************/
|
---|
56 | public static void convc1d(ref AP.Complex[] a,
|
---|
57 | int m,
|
---|
58 | ref AP.Complex[] b,
|
---|
59 | int n,
|
---|
60 | ref AP.Complex[] r)
|
---|
61 | {
|
---|
62 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1D: incorrect N or M!");
|
---|
63 |
|
---|
64 | //
|
---|
65 | // normalize task: make M>=N,
|
---|
66 | // so A will be longer that B.
|
---|
67 | //
|
---|
68 | if( m<n )
|
---|
69 | {
|
---|
70 | convc1d(ref b, n, ref a, m, ref r);
|
---|
71 | return;
|
---|
72 | }
|
---|
73 | convc1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /*************************************************************************
|
---|
78 | 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).
|
---|
79 |
|
---|
80 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
81 |
|
---|
82 | INPUT PARAMETERS
|
---|
83 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
84 | M - convolved signal length
|
---|
85 | B - array[0..N-1] - response
|
---|
86 | N - response length, N<=M
|
---|
87 |
|
---|
88 | OUTPUT PARAMETERS
|
---|
89 | R - deconvolved signal. array[0..M-N].
|
---|
90 |
|
---|
91 | NOTE:
|
---|
92 | deconvolution is unstable process and may result in division by zero
|
---|
93 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
94 |
|
---|
95 | NOTE:
|
---|
96 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
97 | functions have non-zero values at negative T's, you can still use this
|
---|
98 | subroutine - just shift its result correspondingly.
|
---|
99 |
|
---|
100 | -- ALGLIB --
|
---|
101 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
102 | *************************************************************************/
|
---|
103 | public static void convc1dinv(ref AP.Complex[] a,
|
---|
104 | int m,
|
---|
105 | ref AP.Complex[] b,
|
---|
106 | int n,
|
---|
107 | ref AP.Complex[] r)
|
---|
108 | {
|
---|
109 | int i = 0;
|
---|
110 | int p = 0;
|
---|
111 | double[] buf = new double[0];
|
---|
112 | double[] buf2 = new double[0];
|
---|
113 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
114 | AP.Complex c1 = 0;
|
---|
115 | AP.Complex c2 = 0;
|
---|
116 | AP.Complex c3 = 0;
|
---|
117 | double t = 0;
|
---|
118 |
|
---|
119 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvC1DInv: incorrect N or M!");
|
---|
120 | p = ftbase.ftbasefindsmooth(m);
|
---|
121 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
122 | buf = new double[2*p];
|
---|
123 | for(i=0; i<=m-1; i++)
|
---|
124 | {
|
---|
125 | buf[2*i+0] = a[i].x;
|
---|
126 | buf[2*i+1] = a[i].y;
|
---|
127 | }
|
---|
128 | for(i=m; i<=p-1; i++)
|
---|
129 | {
|
---|
130 | buf[2*i+0] = 0;
|
---|
131 | buf[2*i+1] = 0;
|
---|
132 | }
|
---|
133 | buf2 = new double[2*p];
|
---|
134 | for(i=0; i<=n-1; i++)
|
---|
135 | {
|
---|
136 | buf2[2*i+0] = b[i].x;
|
---|
137 | buf2[2*i+1] = b[i].y;
|
---|
138 | }
|
---|
139 | for(i=n; i<=p-1; i++)
|
---|
140 | {
|
---|
141 | buf2[2*i+0] = 0;
|
---|
142 | buf2[2*i+1] = 0;
|
---|
143 | }
|
---|
144 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
145 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
146 | for(i=0; i<=p-1; i++)
|
---|
147 | {
|
---|
148 | c1.x = buf[2*i+0];
|
---|
149 | c1.y = buf[2*i+1];
|
---|
150 | c2.x = buf2[2*i+0];
|
---|
151 | c2.y = buf2[2*i+1];
|
---|
152 | c3 = c1/c2;
|
---|
153 | buf[2*i+0] = c3.x;
|
---|
154 | buf[2*i+1] = -c3.y;
|
---|
155 | }
|
---|
156 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
157 | t = (double)(1)/(double)(p);
|
---|
158 | r = new AP.Complex[m-n+1];
|
---|
159 | for(i=0; i<=m-n; i++)
|
---|
160 | {
|
---|
161 | r[i].x = +(t*buf[2*i+0]);
|
---|
162 | r[i].y = -(t*buf[2*i+1]);
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 |
|
---|
167 | /*************************************************************************
|
---|
168 | 1-dimensional circular complex convolution.
|
---|
169 |
|
---|
170 | For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
|
---|
171 | complexity for any M/N.
|
---|
172 |
|
---|
173 | IMPORTANT: normal convolution is commutative, i.e. it is symmetric -
|
---|
174 | conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a
|
---|
175 | signal, periodic function, and another - R - is a response, non-periodic
|
---|
176 | function with limited length.
|
---|
177 |
|
---|
178 | INPUT PARAMETERS
|
---|
179 | S - array[0..M-1] - complex periodic signal
|
---|
180 | M - problem size
|
---|
181 | B - array[0..N-1] - complex non-periodic response
|
---|
182 | N - problem size
|
---|
183 |
|
---|
184 | OUTPUT PARAMETERS
|
---|
185 | R - convolution: A*B. array[0..M-1].
|
---|
186 |
|
---|
187 | NOTE:
|
---|
188 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
189 | functions have non-zero values at negative T's, you can still use this
|
---|
190 | subroutine - just shift its result correspondingly.
|
---|
191 |
|
---|
192 | -- ALGLIB --
|
---|
193 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
194 | *************************************************************************/
|
---|
195 | public static void convc1dcircular(ref AP.Complex[] s,
|
---|
196 | int m,
|
---|
197 | ref AP.Complex[] r,
|
---|
198 | int n,
|
---|
199 | ref AP.Complex[] c)
|
---|
200 | {
|
---|
201 | AP.Complex[] buf = new AP.Complex[0];
|
---|
202 | int i1 = 0;
|
---|
203 | int i2 = 0;
|
---|
204 | int j2 = 0;
|
---|
205 | int i_ = 0;
|
---|
206 | int i1_ = 0;
|
---|
207 |
|
---|
208 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
209 |
|
---|
210 | //
|
---|
211 | // normalize task: make M>=N,
|
---|
212 | // so A will be longer (at least - not shorter) that B.
|
---|
213 | //
|
---|
214 | if( m<n )
|
---|
215 | {
|
---|
216 | buf = new AP.Complex[m];
|
---|
217 | for(i1=0; i1<=m-1; i1++)
|
---|
218 | {
|
---|
219 | buf[i1] = 0;
|
---|
220 | }
|
---|
221 | i1 = 0;
|
---|
222 | while( i1<n )
|
---|
223 | {
|
---|
224 | i2 = Math.Min(i1+m-1, n-1);
|
---|
225 | j2 = i2-i1;
|
---|
226 | i1_ = (i1) - (0);
|
---|
227 | for(i_=0; i_<=j2;i_++)
|
---|
228 | {
|
---|
229 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
230 | }
|
---|
231 | i1 = i1+m;
|
---|
232 | }
|
---|
233 | convc1dcircular(ref s, m, ref buf, m, ref c);
|
---|
234 | return;
|
---|
235 | }
|
---|
236 | convc1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | /*************************************************************************
|
---|
241 | 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).
|
---|
242 |
|
---|
243 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
244 |
|
---|
245 | INPUT PARAMETERS
|
---|
246 | A - array[0..M-1] - convolved periodic signal, A = conv(R, B)
|
---|
247 | M - convolved signal length
|
---|
248 | B - array[0..N-1] - non-periodic response
|
---|
249 | N - response length
|
---|
250 |
|
---|
251 | OUTPUT PARAMETERS
|
---|
252 | R - deconvolved signal. array[0..M-1].
|
---|
253 |
|
---|
254 | NOTE:
|
---|
255 | deconvolution is unstable process and may result in division by zero
|
---|
256 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
257 |
|
---|
258 | NOTE:
|
---|
259 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
260 | functions have non-zero values at negative T's, you can still use this
|
---|
261 | subroutine - just shift its result correspondingly.
|
---|
262 |
|
---|
263 | -- ALGLIB --
|
---|
264 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
265 | *************************************************************************/
|
---|
266 | public static void convc1dcircularinv(ref AP.Complex[] a,
|
---|
267 | int m,
|
---|
268 | ref AP.Complex[] b,
|
---|
269 | int n,
|
---|
270 | ref AP.Complex[] r)
|
---|
271 | {
|
---|
272 | int i = 0;
|
---|
273 | int p = 0;
|
---|
274 | int i1 = 0;
|
---|
275 | int i2 = 0;
|
---|
276 | int j2 = 0;
|
---|
277 | double[] buf = new double[0];
|
---|
278 | double[] buf2 = new double[0];
|
---|
279 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
280 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
281 | AP.Complex c1 = 0;
|
---|
282 | AP.Complex c2 = 0;
|
---|
283 | AP.Complex c3 = 0;
|
---|
284 | double t = 0;
|
---|
285 | int i_ = 0;
|
---|
286 | int i1_ = 0;
|
---|
287 |
|
---|
288 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircularInv: incorrect N or M!");
|
---|
289 |
|
---|
290 | //
|
---|
291 | // normalize task: make M>=N,
|
---|
292 | // so A will be longer (at least - not shorter) that B.
|
---|
293 | //
|
---|
294 | if( m<n )
|
---|
295 | {
|
---|
296 | cbuf = new AP.Complex[m];
|
---|
297 | for(i=0; i<=m-1; i++)
|
---|
298 | {
|
---|
299 | cbuf[i] = 0;
|
---|
300 | }
|
---|
301 | i1 = 0;
|
---|
302 | while( i1<n )
|
---|
303 | {
|
---|
304 | i2 = Math.Min(i1+m-1, n-1);
|
---|
305 | j2 = i2-i1;
|
---|
306 | i1_ = (i1) - (0);
|
---|
307 | for(i_=0; i_<=j2;i_++)
|
---|
308 | {
|
---|
309 | cbuf[i_] = cbuf[i_] + b[i_+i1_];
|
---|
310 | }
|
---|
311 | i1 = i1+m;
|
---|
312 | }
|
---|
313 | convc1dcircularinv(ref a, m, ref cbuf, m, ref r);
|
---|
314 | return;
|
---|
315 | }
|
---|
316 |
|
---|
317 | //
|
---|
318 | // Task is normalized
|
---|
319 | //
|
---|
320 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
321 | buf = new double[2*m];
|
---|
322 | for(i=0; i<=m-1; i++)
|
---|
323 | {
|
---|
324 | buf[2*i+0] = a[i].x;
|
---|
325 | buf[2*i+1] = a[i].y;
|
---|
326 | }
|
---|
327 | buf2 = new double[2*m];
|
---|
328 | for(i=0; i<=n-1; i++)
|
---|
329 | {
|
---|
330 | buf2[2*i+0] = b[i].x;
|
---|
331 | buf2[2*i+1] = b[i].y;
|
---|
332 | }
|
---|
333 | for(i=n; i<=m-1; i++)
|
---|
334 | {
|
---|
335 | buf2[2*i+0] = 0;
|
---|
336 | buf2[2*i+1] = 0;
|
---|
337 | }
|
---|
338 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
339 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
340 | for(i=0; i<=m-1; i++)
|
---|
341 | {
|
---|
342 | c1.x = buf[2*i+0];
|
---|
343 | c1.y = buf[2*i+1];
|
---|
344 | c2.x = buf2[2*i+0];
|
---|
345 | c2.y = buf2[2*i+1];
|
---|
346 | c3 = c1/c2;
|
---|
347 | buf[2*i+0] = c3.x;
|
---|
348 | buf[2*i+1] = -c3.y;
|
---|
349 | }
|
---|
350 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
351 | t = (double)(1)/(double)(m);
|
---|
352 | r = new AP.Complex[m];
|
---|
353 | for(i=0; i<=m-1; i++)
|
---|
354 | {
|
---|
355 | r[i].x = +(t*buf[2*i+0]);
|
---|
356 | r[i].y = -(t*buf[2*i+1]);
|
---|
357 | }
|
---|
358 | }
|
---|
359 |
|
---|
360 |
|
---|
361 | /*************************************************************************
|
---|
362 | 1-dimensional real convolution.
|
---|
363 |
|
---|
364 | Analogous to ConvC1D(), see ConvC1D() comments for more details.
|
---|
365 |
|
---|
366 | INPUT PARAMETERS
|
---|
367 | A - array[0..M-1] - real function to be transformed
|
---|
368 | M - problem size
|
---|
369 | B - array[0..N-1] - real function to be transformed
|
---|
370 | N - problem size
|
---|
371 |
|
---|
372 | OUTPUT PARAMETERS
|
---|
373 | R - convolution: A*B. array[0..N+M-2].
|
---|
374 |
|
---|
375 | NOTE:
|
---|
376 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
377 | functions have non-zero values at negative T's, you can still use this
|
---|
378 | subroutine - just shift its result correspondingly.
|
---|
379 |
|
---|
380 | -- ALGLIB --
|
---|
381 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
382 | *************************************************************************/
|
---|
383 | public static void convr1d(ref double[] a,
|
---|
384 | int m,
|
---|
385 | ref double[] b,
|
---|
386 | int n,
|
---|
387 | ref double[] r)
|
---|
388 | {
|
---|
389 | int i = 0;
|
---|
390 | int j = 0;
|
---|
391 | int p = 0;
|
---|
392 | int q = 0;
|
---|
393 | AP.Complex[] abuf = new AP.Complex[0];
|
---|
394 | AP.Complex[] bbuf = new AP.Complex[0];
|
---|
395 | AP.Complex v = 0;
|
---|
396 | double flop1 = 0;
|
---|
397 | double flop2 = 0;
|
---|
398 |
|
---|
399 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1D: incorrect N or M!");
|
---|
400 |
|
---|
401 | //
|
---|
402 | // normalize task: make M>=N,
|
---|
403 | // so A will be longer that B.
|
---|
404 | //
|
---|
405 | if( m<n )
|
---|
406 | {
|
---|
407 | convr1d(ref b, n, ref a, m, ref r);
|
---|
408 | return;
|
---|
409 | }
|
---|
410 | convr1dx(ref a, m, ref b, n, false, -1, 0, ref r);
|
---|
411 | }
|
---|
412 |
|
---|
413 |
|
---|
414 | /*************************************************************************
|
---|
415 | 1-dimensional real deconvolution (inverse of ConvC1D()).
|
---|
416 |
|
---|
417 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
418 |
|
---|
419 | INPUT PARAMETERS
|
---|
420 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
421 | M - convolved signal length
|
---|
422 | B - array[0..N-1] - response
|
---|
423 | N - response length, N<=M
|
---|
424 |
|
---|
425 | OUTPUT PARAMETERS
|
---|
426 | R - deconvolved signal. array[0..M-N].
|
---|
427 |
|
---|
428 | NOTE:
|
---|
429 | deconvolution is unstable process and may result in division by zero
|
---|
430 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
431 |
|
---|
432 | NOTE:
|
---|
433 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
434 | functions have non-zero values at negative T's, you can still use this
|
---|
435 | subroutine - just shift its result correspondingly.
|
---|
436 |
|
---|
437 | -- ALGLIB --
|
---|
438 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
439 | *************************************************************************/
|
---|
440 | public static void convr1dinv(ref double[] a,
|
---|
441 | int m,
|
---|
442 | ref double[] b,
|
---|
443 | int n,
|
---|
444 | ref double[] r)
|
---|
445 | {
|
---|
446 | int i = 0;
|
---|
447 | int p = 0;
|
---|
448 | double[] buf = new double[0];
|
---|
449 | double[] buf2 = new double[0];
|
---|
450 | double[] buf3 = new double[0];
|
---|
451 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
452 | AP.Complex c1 = 0;
|
---|
453 | AP.Complex c2 = 0;
|
---|
454 | AP.Complex c3 = 0;
|
---|
455 | double t = 0;
|
---|
456 | int i_ = 0;
|
---|
457 |
|
---|
458 | System.Diagnostics.Debug.Assert(n>0 & m>0 & n<=m, "ConvR1DInv: incorrect N or M!");
|
---|
459 | p = ftbase.ftbasefindsmootheven(m);
|
---|
460 | buf = new double[p];
|
---|
461 | for(i_=0; i_<=m-1;i_++)
|
---|
462 | {
|
---|
463 | buf[i_] = a[i_];
|
---|
464 | }
|
---|
465 | for(i=m; i<=p-1; i++)
|
---|
466 | {
|
---|
467 | buf[i] = 0;
|
---|
468 | }
|
---|
469 | buf2 = new double[p];
|
---|
470 | for(i_=0; i_<=n-1;i_++)
|
---|
471 | {
|
---|
472 | buf2[i_] = b[i_];
|
---|
473 | }
|
---|
474 | for(i=n; i<=p-1; i++)
|
---|
475 | {
|
---|
476 | buf2[i] = 0;
|
---|
477 | }
|
---|
478 | buf3 = new double[p];
|
---|
479 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
480 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
481 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
482 | buf[0] = buf[0]/buf2[0];
|
---|
483 | buf[1] = buf[1]/buf2[1];
|
---|
484 | for(i=1; i<=p/2-1; i++)
|
---|
485 | {
|
---|
486 | c1.x = buf[2*i+0];
|
---|
487 | c1.y = buf[2*i+1];
|
---|
488 | c2.x = buf2[2*i+0];
|
---|
489 | c2.y = buf2[2*i+1];
|
---|
490 | c3 = c1/c2;
|
---|
491 | buf[2*i+0] = c3.x;
|
---|
492 | buf[2*i+1] = c3.y;
|
---|
493 | }
|
---|
494 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
495 | r = new double[m-n+1];
|
---|
496 | for(i_=0; i_<=m-n;i_++)
|
---|
497 | {
|
---|
498 | r[i_] = buf[i_];
|
---|
499 | }
|
---|
500 | }
|
---|
501 |
|
---|
502 |
|
---|
503 | /*************************************************************************
|
---|
504 | 1-dimensional circular real convolution.
|
---|
505 |
|
---|
506 | Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.
|
---|
507 |
|
---|
508 | INPUT PARAMETERS
|
---|
509 | S - array[0..M-1] - real signal
|
---|
510 | M - problem size
|
---|
511 | B - array[0..N-1] - real response
|
---|
512 | N - problem size
|
---|
513 |
|
---|
514 | OUTPUT PARAMETERS
|
---|
515 | R - convolution: A*B. array[0..M-1].
|
---|
516 |
|
---|
517 | NOTE:
|
---|
518 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
519 | functions have non-zero values at negative T's, you can still use this
|
---|
520 | subroutine - just shift its result correspondingly.
|
---|
521 |
|
---|
522 | -- ALGLIB --
|
---|
523 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
524 | *************************************************************************/
|
---|
525 | public static void convr1dcircular(ref double[] s,
|
---|
526 | int m,
|
---|
527 | ref double[] r,
|
---|
528 | int n,
|
---|
529 | ref double[] c)
|
---|
530 | {
|
---|
531 | double[] buf = new double[0];
|
---|
532 | int i1 = 0;
|
---|
533 | int i2 = 0;
|
---|
534 | int j2 = 0;
|
---|
535 | int i_ = 0;
|
---|
536 | int i1_ = 0;
|
---|
537 |
|
---|
538 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DCircular: incorrect N or M!");
|
---|
539 |
|
---|
540 | //
|
---|
541 | // normalize task: make M>=N,
|
---|
542 | // so A will be longer (at least - not shorter) that B.
|
---|
543 | //
|
---|
544 | if( m<n )
|
---|
545 | {
|
---|
546 | buf = new double[m];
|
---|
547 | for(i1=0; i1<=m-1; i1++)
|
---|
548 | {
|
---|
549 | buf[i1] = 0;
|
---|
550 | }
|
---|
551 | i1 = 0;
|
---|
552 | while( i1<n )
|
---|
553 | {
|
---|
554 | i2 = Math.Min(i1+m-1, n-1);
|
---|
555 | j2 = i2-i1;
|
---|
556 | i1_ = (i1) - (0);
|
---|
557 | for(i_=0; i_<=j2;i_++)
|
---|
558 | {
|
---|
559 | buf[i_] = buf[i_] + r[i_+i1_];
|
---|
560 | }
|
---|
561 | i1 = i1+m;
|
---|
562 | }
|
---|
563 | convr1dcircular(ref s, m, ref buf, m, ref c);
|
---|
564 | return;
|
---|
565 | }
|
---|
566 |
|
---|
567 | //
|
---|
568 | // reduce to usual convolution
|
---|
569 | //
|
---|
570 | convr1dx(ref s, m, ref r, n, true, -1, 0, ref c);
|
---|
571 | }
|
---|
572 |
|
---|
573 |
|
---|
574 | /*************************************************************************
|
---|
575 | 1-dimensional complex deconvolution (inverse of ConvC1D()).
|
---|
576 |
|
---|
577 | Algorithm has M*log(M)) complexity for any M (composite or prime).
|
---|
578 |
|
---|
579 | INPUT PARAMETERS
|
---|
580 | A - array[0..M-1] - convolved signal, A = conv(R, B)
|
---|
581 | M - convolved signal length
|
---|
582 | B - array[0..N-1] - response
|
---|
583 | N - response length
|
---|
584 |
|
---|
585 | OUTPUT PARAMETERS
|
---|
586 | R - deconvolved signal. array[0..M-N].
|
---|
587 |
|
---|
588 | NOTE:
|
---|
589 | deconvolution is unstable process and may result in division by zero
|
---|
590 | (if your response function is degenerate, i.e. has zero Fourier coefficient).
|
---|
591 |
|
---|
592 | NOTE:
|
---|
593 | It is assumed that A is zero at T<0, B is zero too. If one or both
|
---|
594 | functions have non-zero values at negative T's, you can still use this
|
---|
595 | subroutine - just shift its result correspondingly.
|
---|
596 |
|
---|
597 | -- ALGLIB --
|
---|
598 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
599 | *************************************************************************/
|
---|
600 | public static void convr1dcircularinv(ref double[] a,
|
---|
601 | int m,
|
---|
602 | ref double[] b,
|
---|
603 | int n,
|
---|
604 | ref double[] r)
|
---|
605 | {
|
---|
606 | int i = 0;
|
---|
607 | int i1 = 0;
|
---|
608 | int i2 = 0;
|
---|
609 | int j2 = 0;
|
---|
610 | double[] buf = new double[0];
|
---|
611 | double[] buf2 = new double[0];
|
---|
612 | double[] buf3 = new double[0];
|
---|
613 | AP.Complex[] cbuf = new AP.Complex[0];
|
---|
614 | AP.Complex[] cbuf2 = new AP.Complex[0];
|
---|
615 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
616 | AP.Complex c1 = 0;
|
---|
617 | AP.Complex c2 = 0;
|
---|
618 | AP.Complex c3 = 0;
|
---|
619 | double t = 0;
|
---|
620 | int i_ = 0;
|
---|
621 | int i1_ = 0;
|
---|
622 |
|
---|
623 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvR1DCircularInv: incorrect N or M!");
|
---|
624 |
|
---|
625 | //
|
---|
626 | // normalize task: make M>=N,
|
---|
627 | // so A will be longer (at least - not shorter) that B.
|
---|
628 | //
|
---|
629 | if( m<n )
|
---|
630 | {
|
---|
631 | buf = new double[m];
|
---|
632 | for(i=0; i<=m-1; i++)
|
---|
633 | {
|
---|
634 | buf[i] = 0;
|
---|
635 | }
|
---|
636 | i1 = 0;
|
---|
637 | while( i1<n )
|
---|
638 | {
|
---|
639 | i2 = Math.Min(i1+m-1, n-1);
|
---|
640 | j2 = i2-i1;
|
---|
641 | i1_ = (i1) - (0);
|
---|
642 | for(i_=0; i_<=j2;i_++)
|
---|
643 | {
|
---|
644 | buf[i_] = buf[i_] + b[i_+i1_];
|
---|
645 | }
|
---|
646 | i1 = i1+m;
|
---|
647 | }
|
---|
648 | convr1dcircularinv(ref a, m, ref buf, m, ref r);
|
---|
649 | return;
|
---|
650 | }
|
---|
651 |
|
---|
652 | //
|
---|
653 | // Task is normalized
|
---|
654 | //
|
---|
655 | if( m%2==0 )
|
---|
656 | {
|
---|
657 |
|
---|
658 | //
|
---|
659 | // size is even, use fast even-size FFT
|
---|
660 | //
|
---|
661 | buf = new double[m];
|
---|
662 | for(i_=0; i_<=m-1;i_++)
|
---|
663 | {
|
---|
664 | buf[i_] = a[i_];
|
---|
665 | }
|
---|
666 | buf2 = new double[m];
|
---|
667 | for(i_=0; i_<=n-1;i_++)
|
---|
668 | {
|
---|
669 | buf2[i_] = b[i_];
|
---|
670 | }
|
---|
671 | for(i=n; i<=m-1; i++)
|
---|
672 | {
|
---|
673 | buf2[i] = 0;
|
---|
674 | }
|
---|
675 | buf3 = new double[m];
|
---|
676 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
677 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
678 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
679 | buf[0] = buf[0]/buf2[0];
|
---|
680 | buf[1] = buf[1]/buf2[1];
|
---|
681 | for(i=1; i<=m/2-1; i++)
|
---|
682 | {
|
---|
683 | c1.x = buf[2*i+0];
|
---|
684 | c1.y = buf[2*i+1];
|
---|
685 | c2.x = buf2[2*i+0];
|
---|
686 | c2.y = buf2[2*i+1];
|
---|
687 | c3 = c1/c2;
|
---|
688 | buf[2*i+0] = c3.x;
|
---|
689 | buf[2*i+1] = c3.y;
|
---|
690 | }
|
---|
691 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
692 | r = new double[m];
|
---|
693 | for(i_=0; i_<=m-1;i_++)
|
---|
694 | {
|
---|
695 | r[i_] = buf[i_];
|
---|
696 | }
|
---|
697 | }
|
---|
698 | else
|
---|
699 | {
|
---|
700 |
|
---|
701 | //
|
---|
702 | // odd-size, use general real FFT
|
---|
703 | //
|
---|
704 | fft.fftr1d(ref a, m, ref cbuf);
|
---|
705 | buf2 = new double[m];
|
---|
706 | for(i_=0; i_<=n-1;i_++)
|
---|
707 | {
|
---|
708 | buf2[i_] = b[i_];
|
---|
709 | }
|
---|
710 | for(i=n; i<=m-1; i++)
|
---|
711 | {
|
---|
712 | buf2[i] = 0;
|
---|
713 | }
|
---|
714 | fft.fftr1d(ref buf2, m, ref cbuf2);
|
---|
715 | for(i=0; i<=(int)Math.Floor((double)(m)/(double)(2)); i++)
|
---|
716 | {
|
---|
717 | cbuf[i] = cbuf[i]/cbuf2[i];
|
---|
718 | }
|
---|
719 | fft.fftr1dinv(ref cbuf, m, ref r);
|
---|
720 | }
|
---|
721 | }
|
---|
722 |
|
---|
723 |
|
---|
724 | /*************************************************************************
|
---|
725 | 1-dimensional complex convolution.
|
---|
726 |
|
---|
727 | Extended subroutine which allows to choose convolution algorithm.
|
---|
728 | Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().
|
---|
729 |
|
---|
730 | INPUT PARAMETERS
|
---|
731 | A - array[0..M-1] - complex function to be transformed
|
---|
732 | M - problem size
|
---|
733 | B - array[0..N-1] - complex function to be transformed
|
---|
734 | N - problem size, N<=M
|
---|
735 | Alg - algorithm type:
|
---|
736 | *-2 auto-select Q for overlap-add
|
---|
737 | *-1 auto-select algorithm and parameters
|
---|
738 | * 0 straightforward formula for small N's
|
---|
739 | * 1 general FFT-based code
|
---|
740 | * 2 overlap-add with length Q
|
---|
741 | Q - length for overlap-add
|
---|
742 |
|
---|
743 | OUTPUT PARAMETERS
|
---|
744 | R - convolution: A*B. array[0..N+M-1].
|
---|
745 |
|
---|
746 | -- ALGLIB --
|
---|
747 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
748 | *************************************************************************/
|
---|
749 | public static void convc1dx(ref AP.Complex[] a,
|
---|
750 | int m,
|
---|
751 | ref AP.Complex[] b,
|
---|
752 | int n,
|
---|
753 | bool circular,
|
---|
754 | int alg,
|
---|
755 | int q,
|
---|
756 | ref AP.Complex[] r)
|
---|
757 | {
|
---|
758 | int i = 0;
|
---|
759 | int j = 0;
|
---|
760 | int p = 0;
|
---|
761 | int ptotal = 0;
|
---|
762 | int i1 = 0;
|
---|
763 | int i2 = 0;
|
---|
764 | int j1 = 0;
|
---|
765 | int j2 = 0;
|
---|
766 | AP.Complex[] bbuf = new AP.Complex[0];
|
---|
767 | AP.Complex v = 0;
|
---|
768 | double ax = 0;
|
---|
769 | double ay = 0;
|
---|
770 | double bx = 0;
|
---|
771 | double by = 0;
|
---|
772 | double t = 0;
|
---|
773 | double tx = 0;
|
---|
774 | double ty = 0;
|
---|
775 | double flopcand = 0;
|
---|
776 | double flopbest = 0;
|
---|
777 | int algbest = 0;
|
---|
778 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
779 | double[] buf = new double[0];
|
---|
780 | double[] buf2 = new double[0];
|
---|
781 | int i_ = 0;
|
---|
782 | int i1_ = 0;
|
---|
783 |
|
---|
784 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
785 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
786 |
|
---|
787 | //
|
---|
788 | // Auto-select
|
---|
789 | //
|
---|
790 | if( alg==-1 | alg==-2 )
|
---|
791 | {
|
---|
792 |
|
---|
793 | //
|
---|
794 | // Initial candidate: straightforward implementation.
|
---|
795 | //
|
---|
796 | // If we want to use auto-fitted overlap-add,
|
---|
797 | // flop count is initialized by large real number - to force
|
---|
798 | // another algorithm selection
|
---|
799 | //
|
---|
800 | algbest = 0;
|
---|
801 | if( alg==-1 )
|
---|
802 | {
|
---|
803 | flopbest = 2*m*n;
|
---|
804 | }
|
---|
805 | else
|
---|
806 | {
|
---|
807 | flopbest = AP.Math.MaxRealNumber;
|
---|
808 | }
|
---|
809 |
|
---|
810 | //
|
---|
811 | // Another candidate - generic FFT code
|
---|
812 | //
|
---|
813 | if( alg==-1 )
|
---|
814 | {
|
---|
815 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
816 | {
|
---|
817 |
|
---|
818 | //
|
---|
819 | // special code for circular convolution of a sequence with a smooth length
|
---|
820 | //
|
---|
821 | flopcand = 3*ftbase.ftbasegetflopestimate(m)+6*m;
|
---|
822 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
823 | {
|
---|
824 | algbest = 1;
|
---|
825 | flopbest = flopcand;
|
---|
826 | }
|
---|
827 | }
|
---|
828 | else
|
---|
829 | {
|
---|
830 |
|
---|
831 | //
|
---|
832 | // general cyclic/non-cyclic convolution
|
---|
833 | //
|
---|
834 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
835 | flopcand = 3*ftbase.ftbasegetflopestimate(p)+6*p;
|
---|
836 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
837 | {
|
---|
838 | algbest = 1;
|
---|
839 | flopbest = flopcand;
|
---|
840 | }
|
---|
841 | }
|
---|
842 | }
|
---|
843 |
|
---|
844 | //
|
---|
845 | // Another candidate - overlap-add
|
---|
846 | //
|
---|
847 | q = 1;
|
---|
848 | ptotal = 1;
|
---|
849 | while( ptotal<n )
|
---|
850 | {
|
---|
851 | ptotal = ptotal*2;
|
---|
852 | }
|
---|
853 | while( ptotal<=m+n-1 )
|
---|
854 | {
|
---|
855 | p = ptotal-n+1;
|
---|
856 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal)+8*ptotal);
|
---|
857 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
858 | {
|
---|
859 | flopbest = flopcand;
|
---|
860 | algbest = 2;
|
---|
861 | q = p;
|
---|
862 | }
|
---|
863 | ptotal = ptotal*2;
|
---|
864 | }
|
---|
865 | alg = algbest;
|
---|
866 | convc1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
867 | return;
|
---|
868 | }
|
---|
869 |
|
---|
870 | //
|
---|
871 | // straightforward formula for
|
---|
872 | // circular and non-circular convolutions.
|
---|
873 | //
|
---|
874 | // Very simple code, no further comments needed.
|
---|
875 | //
|
---|
876 | if( alg==0 )
|
---|
877 | {
|
---|
878 |
|
---|
879 | //
|
---|
880 | // Special case: N=1
|
---|
881 | //
|
---|
882 | if( n==1 )
|
---|
883 | {
|
---|
884 | r = new AP.Complex[m];
|
---|
885 | v = b[0];
|
---|
886 | for(i_=0; i_<=m-1;i_++)
|
---|
887 | {
|
---|
888 | r[i_] = v*a[i_];
|
---|
889 | }
|
---|
890 | return;
|
---|
891 | }
|
---|
892 |
|
---|
893 | //
|
---|
894 | // use straightforward formula
|
---|
895 | //
|
---|
896 | if( circular )
|
---|
897 | {
|
---|
898 |
|
---|
899 | //
|
---|
900 | // circular convolution
|
---|
901 | //
|
---|
902 | r = new AP.Complex[m];
|
---|
903 | v = b[0];
|
---|
904 | for(i_=0; i_<=m-1;i_++)
|
---|
905 | {
|
---|
906 | r[i_] = v*a[i_];
|
---|
907 | }
|
---|
908 | for(i=1; i<=n-1; i++)
|
---|
909 | {
|
---|
910 | v = b[i];
|
---|
911 | i1 = 0;
|
---|
912 | i2 = i-1;
|
---|
913 | j1 = m-i;
|
---|
914 | j2 = m-1;
|
---|
915 | i1_ = (j1) - (i1);
|
---|
916 | for(i_=i1; i_<=i2;i_++)
|
---|
917 | {
|
---|
918 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
919 | }
|
---|
920 | i1 = i;
|
---|
921 | i2 = m-1;
|
---|
922 | j1 = 0;
|
---|
923 | j2 = m-i-1;
|
---|
924 | i1_ = (j1) - (i1);
|
---|
925 | for(i_=i1; i_<=i2;i_++)
|
---|
926 | {
|
---|
927 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
928 | }
|
---|
929 | }
|
---|
930 | }
|
---|
931 | else
|
---|
932 | {
|
---|
933 |
|
---|
934 | //
|
---|
935 | // non-circular convolution
|
---|
936 | //
|
---|
937 | r = new AP.Complex[m+n-1];
|
---|
938 | for(i=0; i<=m+n-2; i++)
|
---|
939 | {
|
---|
940 | r[i] = 0;
|
---|
941 | }
|
---|
942 | for(i=0; i<=n-1; i++)
|
---|
943 | {
|
---|
944 | v = b[i];
|
---|
945 | i1_ = (0) - (i);
|
---|
946 | for(i_=i; i_<=i+m-1;i_++)
|
---|
947 | {
|
---|
948 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
949 | }
|
---|
950 | }
|
---|
951 | }
|
---|
952 | return;
|
---|
953 | }
|
---|
954 |
|
---|
955 | //
|
---|
956 | // general FFT-based code for
|
---|
957 | // circular and non-circular convolutions.
|
---|
958 | //
|
---|
959 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
960 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
961 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
962 | //
|
---|
963 | // IF convolution is non-circular, we use zero-padding + FFT.
|
---|
964 | //
|
---|
965 | if( alg==1 )
|
---|
966 | {
|
---|
967 | if( circular & ftbase.ftbaseissmooth(m) )
|
---|
968 | {
|
---|
969 |
|
---|
970 | //
|
---|
971 | // special code for circular convolution with smooth M
|
---|
972 | //
|
---|
973 | ftbase.ftbasegeneratecomplexfftplan(m, ref plan);
|
---|
974 | buf = new double[2*m];
|
---|
975 | for(i=0; i<=m-1; i++)
|
---|
976 | {
|
---|
977 | buf[2*i+0] = a[i].x;
|
---|
978 | buf[2*i+1] = a[i].y;
|
---|
979 | }
|
---|
980 | buf2 = new double[2*m];
|
---|
981 | for(i=0; i<=n-1; i++)
|
---|
982 | {
|
---|
983 | buf2[2*i+0] = b[i].x;
|
---|
984 | buf2[2*i+1] = b[i].y;
|
---|
985 | }
|
---|
986 | for(i=n; i<=m-1; i++)
|
---|
987 | {
|
---|
988 | buf2[2*i+0] = 0;
|
---|
989 | buf2[2*i+1] = 0;
|
---|
990 | }
|
---|
991 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
992 | ftbase.ftbaseexecuteplan(ref buf2, 0, m, ref plan);
|
---|
993 | for(i=0; i<=m-1; i++)
|
---|
994 | {
|
---|
995 | ax = buf[2*i+0];
|
---|
996 | ay = buf[2*i+1];
|
---|
997 | bx = buf2[2*i+0];
|
---|
998 | by = buf2[2*i+1];
|
---|
999 | tx = ax*bx-ay*by;
|
---|
1000 | ty = ax*by+ay*bx;
|
---|
1001 | buf[2*i+0] = tx;
|
---|
1002 | buf[2*i+1] = -ty;
|
---|
1003 | }
|
---|
1004 | ftbase.ftbaseexecuteplan(ref buf, 0, m, ref plan);
|
---|
1005 | t = (double)(1)/(double)(m);
|
---|
1006 | r = new AP.Complex[m];
|
---|
1007 | for(i=0; i<=m-1; i++)
|
---|
1008 | {
|
---|
1009 | r[i].x = +(t*buf[2*i+0]);
|
---|
1010 | r[i].y = -(t*buf[2*i+1]);
|
---|
1011 | }
|
---|
1012 | }
|
---|
1013 | else
|
---|
1014 | {
|
---|
1015 |
|
---|
1016 | //
|
---|
1017 | // M is non-smooth, general code (circular/non-circular):
|
---|
1018 | // * first part is the same for circular and non-circular
|
---|
1019 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
1020 | // * second part differs:
|
---|
1021 | // * for non-circular convolution we just copy array
|
---|
1022 | // * for circular convolution we add array tail to its head
|
---|
1023 | //
|
---|
1024 | p = ftbase.ftbasefindsmooth(m+n-1);
|
---|
1025 | ftbase.ftbasegeneratecomplexfftplan(p, ref plan);
|
---|
1026 | buf = new double[2*p];
|
---|
1027 | for(i=0; i<=m-1; i++)
|
---|
1028 | {
|
---|
1029 | buf[2*i+0] = a[i].x;
|
---|
1030 | buf[2*i+1] = a[i].y;
|
---|
1031 | }
|
---|
1032 | for(i=m; i<=p-1; i++)
|
---|
1033 | {
|
---|
1034 | buf[2*i+0] = 0;
|
---|
1035 | buf[2*i+1] = 0;
|
---|
1036 | }
|
---|
1037 | buf2 = new double[2*p];
|
---|
1038 | for(i=0; i<=n-1; i++)
|
---|
1039 | {
|
---|
1040 | buf2[2*i+0] = b[i].x;
|
---|
1041 | buf2[2*i+1] = b[i].y;
|
---|
1042 | }
|
---|
1043 | for(i=n; i<=p-1; i++)
|
---|
1044 | {
|
---|
1045 | buf2[2*i+0] = 0;
|
---|
1046 | buf2[2*i+1] = 0;
|
---|
1047 | }
|
---|
1048 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
1049 | ftbase.ftbaseexecuteplan(ref buf2, 0, p, ref plan);
|
---|
1050 | for(i=0; i<=p-1; i++)
|
---|
1051 | {
|
---|
1052 | ax = buf[2*i+0];
|
---|
1053 | ay = buf[2*i+1];
|
---|
1054 | bx = buf2[2*i+0];
|
---|
1055 | by = buf2[2*i+1];
|
---|
1056 | tx = ax*bx-ay*by;
|
---|
1057 | ty = ax*by+ay*bx;
|
---|
1058 | buf[2*i+0] = tx;
|
---|
1059 | buf[2*i+1] = -ty;
|
---|
1060 | }
|
---|
1061 | ftbase.ftbaseexecuteplan(ref buf, 0, p, ref plan);
|
---|
1062 | t = (double)(1)/(double)(p);
|
---|
1063 | if( circular )
|
---|
1064 | {
|
---|
1065 |
|
---|
1066 | //
|
---|
1067 | // circular, add tail to head
|
---|
1068 | //
|
---|
1069 | r = new AP.Complex[m];
|
---|
1070 | for(i=0; i<=m-1; i++)
|
---|
1071 | {
|
---|
1072 | r[i].x = +(t*buf[2*i+0]);
|
---|
1073 | r[i].y = -(t*buf[2*i+1]);
|
---|
1074 | }
|
---|
1075 | for(i=m; i<=m+n-2; i++)
|
---|
1076 | {
|
---|
1077 | r[i-m].x = r[i-m].x+t*buf[2*i+0];
|
---|
1078 | r[i-m].y = r[i-m].y-t*buf[2*i+1];
|
---|
1079 | }
|
---|
1080 | }
|
---|
1081 | else
|
---|
1082 | {
|
---|
1083 |
|
---|
1084 | //
|
---|
1085 | // non-circular, just copy
|
---|
1086 | //
|
---|
1087 | r = new AP.Complex[m+n-1];
|
---|
1088 | for(i=0; i<=m+n-2; i++)
|
---|
1089 | {
|
---|
1090 | r[i].x = +(t*buf[2*i+0]);
|
---|
1091 | r[i].y = -(t*buf[2*i+1]);
|
---|
1092 | }
|
---|
1093 | }
|
---|
1094 | }
|
---|
1095 | return;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | //
|
---|
1099 | // overlap-add method for
|
---|
1100 | // circular and non-circular convolutions.
|
---|
1101 | //
|
---|
1102 | // First part of code (separate FFTs of input blocks) is the same
|
---|
1103 | // for all types of convolution. Second part (overlapping outputs)
|
---|
1104 | // differs for different types of convolution. We just copy output
|
---|
1105 | // when convolution is non-circular. We wrap it around, if it is
|
---|
1106 | // circular.
|
---|
1107 | //
|
---|
1108 | if( alg==2 )
|
---|
1109 | {
|
---|
1110 | buf = new double[2*(q+n-1)];
|
---|
1111 |
|
---|
1112 | //
|
---|
1113 | // prepare R
|
---|
1114 | //
|
---|
1115 | if( circular )
|
---|
1116 | {
|
---|
1117 | r = new AP.Complex[m];
|
---|
1118 | for(i=0; i<=m-1; i++)
|
---|
1119 | {
|
---|
1120 | r[i] = 0;
|
---|
1121 | }
|
---|
1122 | }
|
---|
1123 | else
|
---|
1124 | {
|
---|
1125 | r = new AP.Complex[m+n-1];
|
---|
1126 | for(i=0; i<=m+n-2; i++)
|
---|
1127 | {
|
---|
1128 | r[i] = 0;
|
---|
1129 | }
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | //
|
---|
1133 | // pre-calculated FFT(B)
|
---|
1134 | //
|
---|
1135 | bbuf = new AP.Complex[q+n-1];
|
---|
1136 | for(i_=0; i_<=n-1;i_++)
|
---|
1137 | {
|
---|
1138 | bbuf[i_] = b[i_];
|
---|
1139 | }
|
---|
1140 | for(j=n; j<=q+n-2; j++)
|
---|
1141 | {
|
---|
1142 | bbuf[j] = 0;
|
---|
1143 | }
|
---|
1144 | fft.fftc1d(ref bbuf, q+n-1);
|
---|
1145 |
|
---|
1146 | //
|
---|
1147 | // prepare FFT plan for chunks of A
|
---|
1148 | //
|
---|
1149 | ftbase.ftbasegeneratecomplexfftplan(q+n-1, ref plan);
|
---|
1150 |
|
---|
1151 | //
|
---|
1152 | // main overlap-add cycle
|
---|
1153 | //
|
---|
1154 | i = 0;
|
---|
1155 | while( i<=m-1 )
|
---|
1156 | {
|
---|
1157 | p = Math.Min(q, m-i);
|
---|
1158 | for(j=0; j<=p-1; j++)
|
---|
1159 | {
|
---|
1160 | buf[2*j+0] = a[i+j].x;
|
---|
1161 | buf[2*j+1] = a[i+j].y;
|
---|
1162 | }
|
---|
1163 | for(j=p; j<=q+n-2; j++)
|
---|
1164 | {
|
---|
1165 | buf[2*j+0] = 0;
|
---|
1166 | buf[2*j+1] = 0;
|
---|
1167 | }
|
---|
1168 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
1169 | for(j=0; j<=q+n-2; j++)
|
---|
1170 | {
|
---|
1171 | ax = buf[2*j+0];
|
---|
1172 | ay = buf[2*j+1];
|
---|
1173 | bx = bbuf[j].x;
|
---|
1174 | by = bbuf[j].y;
|
---|
1175 | tx = ax*bx-ay*by;
|
---|
1176 | ty = ax*by+ay*bx;
|
---|
1177 | buf[2*j+0] = tx;
|
---|
1178 | buf[2*j+1] = -ty;
|
---|
1179 | }
|
---|
1180 | ftbase.ftbaseexecuteplan(ref buf, 0, q+n-1, ref plan);
|
---|
1181 | t = (double)(1)/((double)(q+n-1));
|
---|
1182 | if( circular )
|
---|
1183 | {
|
---|
1184 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
1185 | j2 = j1+1;
|
---|
1186 | }
|
---|
1187 | else
|
---|
1188 | {
|
---|
1189 | j1 = p+n-2;
|
---|
1190 | j2 = j1+1;
|
---|
1191 | }
|
---|
1192 | for(j=0; j<=j1; j++)
|
---|
1193 | {
|
---|
1194 | r[i+j].x = r[i+j].x+buf[2*j+0]*t;
|
---|
1195 | r[i+j].y = r[i+j].y-buf[2*j+1]*t;
|
---|
1196 | }
|
---|
1197 | for(j=j2; j<=p+n-2; j++)
|
---|
1198 | {
|
---|
1199 | r[j-j2].x = r[j-j2].x+buf[2*j+0]*t;
|
---|
1200 | r[j-j2].y = r[j-j2].y-buf[2*j+1]*t;
|
---|
1201 | }
|
---|
1202 | i = i+p;
|
---|
1203 | }
|
---|
1204 | return;
|
---|
1205 | }
|
---|
1206 | }
|
---|
1207 |
|
---|
1208 |
|
---|
1209 | /*************************************************************************
|
---|
1210 | 1-dimensional real convolution.
|
---|
1211 |
|
---|
1212 | Extended subroutine which allows to choose convolution algorithm.
|
---|
1213 | Intended for internal use, ALGLIB users should call ConvR1D().
|
---|
1214 |
|
---|
1215 | INPUT PARAMETERS
|
---|
1216 | A - array[0..M-1] - complex function to be transformed
|
---|
1217 | M - problem size
|
---|
1218 | B - array[0..N-1] - complex function to be transformed
|
---|
1219 | N - problem size, N<=M
|
---|
1220 | Alg - algorithm type:
|
---|
1221 | *-2 auto-select Q for overlap-add
|
---|
1222 | *-1 auto-select algorithm and parameters
|
---|
1223 | * 0 straightforward formula for small N's
|
---|
1224 | * 1 general FFT-based code
|
---|
1225 | * 2 overlap-add with length Q
|
---|
1226 | Q - length for overlap-add
|
---|
1227 |
|
---|
1228 | OUTPUT PARAMETERS
|
---|
1229 | R - convolution: A*B. array[0..N+M-1].
|
---|
1230 |
|
---|
1231 | -- ALGLIB --
|
---|
1232 | Copyright 21.07.2009 by Bochkanov Sergey
|
---|
1233 | *************************************************************************/
|
---|
1234 | public static void convr1dx(ref double[] a,
|
---|
1235 | int m,
|
---|
1236 | ref double[] b,
|
---|
1237 | int n,
|
---|
1238 | bool circular,
|
---|
1239 | int alg,
|
---|
1240 | int q,
|
---|
1241 | ref double[] r)
|
---|
1242 | {
|
---|
1243 | double v = 0;
|
---|
1244 | int i = 0;
|
---|
1245 | int j = 0;
|
---|
1246 | int p = 0;
|
---|
1247 | int ptotal = 0;
|
---|
1248 | int i1 = 0;
|
---|
1249 | int i2 = 0;
|
---|
1250 | int j1 = 0;
|
---|
1251 | int j2 = 0;
|
---|
1252 | double ax = 0;
|
---|
1253 | double ay = 0;
|
---|
1254 | double bx = 0;
|
---|
1255 | double by = 0;
|
---|
1256 | double t = 0;
|
---|
1257 | double tx = 0;
|
---|
1258 | double ty = 0;
|
---|
1259 | double flopcand = 0;
|
---|
1260 | double flopbest = 0;
|
---|
1261 | int algbest = 0;
|
---|
1262 | ftbase.ftplan plan = new ftbase.ftplan();
|
---|
1263 | double[] buf = new double[0];
|
---|
1264 | double[] buf2 = new double[0];
|
---|
1265 | double[] buf3 = new double[0];
|
---|
1266 | int i_ = 0;
|
---|
1267 | int i1_ = 0;
|
---|
1268 |
|
---|
1269 | System.Diagnostics.Debug.Assert(n>0 & m>0, "ConvC1DX: incorrect N or M!");
|
---|
1270 | System.Diagnostics.Debug.Assert(n<=m, "ConvC1DX: N<M assumption is false!");
|
---|
1271 |
|
---|
1272 | //
|
---|
1273 | // handle special cases
|
---|
1274 | //
|
---|
1275 | if( Math.Min(m, n)<=2 )
|
---|
1276 | {
|
---|
1277 | alg = 0;
|
---|
1278 | }
|
---|
1279 |
|
---|
1280 | //
|
---|
1281 | // Auto-select
|
---|
1282 | //
|
---|
1283 | if( alg<0 )
|
---|
1284 | {
|
---|
1285 |
|
---|
1286 | //
|
---|
1287 | // Initial candidate: straightforward implementation.
|
---|
1288 | //
|
---|
1289 | // If we want to use auto-fitted overlap-add,
|
---|
1290 | // flop count is initialized by large real number - to force
|
---|
1291 | // another algorithm selection
|
---|
1292 | //
|
---|
1293 | algbest = 0;
|
---|
1294 | if( alg==-1 )
|
---|
1295 | {
|
---|
1296 | flopbest = 0.15*m*n;
|
---|
1297 | }
|
---|
1298 | else
|
---|
1299 | {
|
---|
1300 | flopbest = AP.Math.MaxRealNumber;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | //
|
---|
1304 | // Another candidate - generic FFT code
|
---|
1305 | //
|
---|
1306 | if( alg==-1 )
|
---|
1307 | {
|
---|
1308 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
1309 | {
|
---|
1310 |
|
---|
1311 | //
|
---|
1312 | // special code for circular convolution of a sequence with a smooth length
|
---|
1313 | //
|
---|
1314 | flopcand = 3*ftbase.ftbasegetflopestimate(m/2)+(double)(6*m)/(double)(2);
|
---|
1315 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1316 | {
|
---|
1317 | algbest = 1;
|
---|
1318 | flopbest = flopcand;
|
---|
1319 | }
|
---|
1320 | }
|
---|
1321 | else
|
---|
1322 | {
|
---|
1323 |
|
---|
1324 | //
|
---|
1325 | // general cyclic/non-cyclic convolution
|
---|
1326 | //
|
---|
1327 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
1328 | flopcand = 3*ftbase.ftbasegetflopestimate(p/2)+(double)(6*p)/(double)(2);
|
---|
1329 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1330 | {
|
---|
1331 | algbest = 1;
|
---|
1332 | flopbest = flopcand;
|
---|
1333 | }
|
---|
1334 | }
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | //
|
---|
1338 | // Another candidate - overlap-add
|
---|
1339 | //
|
---|
1340 | q = 1;
|
---|
1341 | ptotal = 1;
|
---|
1342 | while( ptotal<n )
|
---|
1343 | {
|
---|
1344 | ptotal = ptotal*2;
|
---|
1345 | }
|
---|
1346 | while( ptotal<=m+n-1 )
|
---|
1347 | {
|
---|
1348 | p = ptotal-n+1;
|
---|
1349 | flopcand = (int)Math.Ceiling((double)(m)/(double)(p))*(2*ftbase.ftbasegetflopestimate(ptotal/2)+1*(ptotal/2));
|
---|
1350 | if( (double)(flopcand)<(double)(flopbest) )
|
---|
1351 | {
|
---|
1352 | flopbest = flopcand;
|
---|
1353 | algbest = 2;
|
---|
1354 | q = p;
|
---|
1355 | }
|
---|
1356 | ptotal = ptotal*2;
|
---|
1357 | }
|
---|
1358 | alg = algbest;
|
---|
1359 | convr1dx(ref a, m, ref b, n, circular, alg, q, ref r);
|
---|
1360 | return;
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | //
|
---|
1364 | // straightforward formula for
|
---|
1365 | // circular and non-circular convolutions.
|
---|
1366 | //
|
---|
1367 | // Very simple code, no further comments needed.
|
---|
1368 | //
|
---|
1369 | if( alg==0 )
|
---|
1370 | {
|
---|
1371 |
|
---|
1372 | //
|
---|
1373 | // Special case: N=1
|
---|
1374 | //
|
---|
1375 | if( n==1 )
|
---|
1376 | {
|
---|
1377 | r = new double[m];
|
---|
1378 | v = b[0];
|
---|
1379 | for(i_=0; i_<=m-1;i_++)
|
---|
1380 | {
|
---|
1381 | r[i_] = v*a[i_];
|
---|
1382 | }
|
---|
1383 | return;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | //
|
---|
1387 | // use straightforward formula
|
---|
1388 | //
|
---|
1389 | if( circular )
|
---|
1390 | {
|
---|
1391 |
|
---|
1392 | //
|
---|
1393 | // circular convolution
|
---|
1394 | //
|
---|
1395 | r = new double[m];
|
---|
1396 | v = b[0];
|
---|
1397 | for(i_=0; i_<=m-1;i_++)
|
---|
1398 | {
|
---|
1399 | r[i_] = v*a[i_];
|
---|
1400 | }
|
---|
1401 | for(i=1; i<=n-1; i++)
|
---|
1402 | {
|
---|
1403 | v = b[i];
|
---|
1404 | i1 = 0;
|
---|
1405 | i2 = i-1;
|
---|
1406 | j1 = m-i;
|
---|
1407 | j2 = m-1;
|
---|
1408 | i1_ = (j1) - (i1);
|
---|
1409 | for(i_=i1; i_<=i2;i_++)
|
---|
1410 | {
|
---|
1411 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1412 | }
|
---|
1413 | i1 = i;
|
---|
1414 | i2 = m-1;
|
---|
1415 | j1 = 0;
|
---|
1416 | j2 = m-i-1;
|
---|
1417 | i1_ = (j1) - (i1);
|
---|
1418 | for(i_=i1; i_<=i2;i_++)
|
---|
1419 | {
|
---|
1420 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 | }
|
---|
1424 | else
|
---|
1425 | {
|
---|
1426 |
|
---|
1427 | //
|
---|
1428 | // non-circular convolution
|
---|
1429 | //
|
---|
1430 | r = new double[m+n-1];
|
---|
1431 | for(i=0; i<=m+n-2; i++)
|
---|
1432 | {
|
---|
1433 | r[i] = 0;
|
---|
1434 | }
|
---|
1435 | for(i=0; i<=n-1; i++)
|
---|
1436 | {
|
---|
1437 | v = b[i];
|
---|
1438 | i1_ = (0) - (i);
|
---|
1439 | for(i_=i; i_<=i+m-1;i_++)
|
---|
1440 | {
|
---|
1441 | r[i_] = r[i_] + v*a[i_+i1_];
|
---|
1442 | }
|
---|
1443 | }
|
---|
1444 | }
|
---|
1445 | return;
|
---|
1446 | }
|
---|
1447 |
|
---|
1448 | //
|
---|
1449 | // general FFT-based code for
|
---|
1450 | // circular and non-circular convolutions.
|
---|
1451 | //
|
---|
1452 | // First, if convolution is circular, we test whether M is smooth or not.
|
---|
1453 | // If it is smooth, we just use M-length FFT to calculate convolution.
|
---|
1454 | // If it is not, we calculate non-circular convolution and wrap it arount.
|
---|
1455 | //
|
---|
1456 | // If convolution is non-circular, we use zero-padding + FFT.
|
---|
1457 | //
|
---|
1458 | // We assume that M+N-1>2 - we should call small case code otherwise
|
---|
1459 | //
|
---|
1460 | if( alg==1 )
|
---|
1461 | {
|
---|
1462 | System.Diagnostics.Debug.Assert(m+n-1>2, "ConvR1DX: internal error!");
|
---|
1463 | if( circular & ftbase.ftbaseissmooth(m) & m%2==0 )
|
---|
1464 | {
|
---|
1465 |
|
---|
1466 | //
|
---|
1467 | // special code for circular convolution with smooth even M
|
---|
1468 | //
|
---|
1469 | buf = new double[m];
|
---|
1470 | for(i_=0; i_<=m-1;i_++)
|
---|
1471 | {
|
---|
1472 | buf[i_] = a[i_];
|
---|
1473 | }
|
---|
1474 | buf2 = new double[m];
|
---|
1475 | for(i_=0; i_<=n-1;i_++)
|
---|
1476 | {
|
---|
1477 | buf2[i_] = b[i_];
|
---|
1478 | }
|
---|
1479 | for(i=n; i<=m-1; i++)
|
---|
1480 | {
|
---|
1481 | buf2[i] = 0;
|
---|
1482 | }
|
---|
1483 | buf3 = new double[m];
|
---|
1484 | ftbase.ftbasegeneratecomplexfftplan(m/2, ref plan);
|
---|
1485 | fft.fftr1dinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
1486 | fft.fftr1dinternaleven(ref buf2, m, ref buf3, ref plan);
|
---|
1487 | buf[0] = buf[0]*buf2[0];
|
---|
1488 | buf[1] = buf[1]*buf2[1];
|
---|
1489 | for(i=1; i<=m/2-1; i++)
|
---|
1490 | {
|
---|
1491 | ax = buf[2*i+0];
|
---|
1492 | ay = buf[2*i+1];
|
---|
1493 | bx = buf2[2*i+0];
|
---|
1494 | by = buf2[2*i+1];
|
---|
1495 | tx = ax*bx-ay*by;
|
---|
1496 | ty = ax*by+ay*bx;
|
---|
1497 | buf[2*i+0] = tx;
|
---|
1498 | buf[2*i+1] = ty;
|
---|
1499 | }
|
---|
1500 | fft.fftr1dinvinternaleven(ref buf, m, ref buf3, ref plan);
|
---|
1501 | r = new double[m];
|
---|
1502 | for(i_=0; i_<=m-1;i_++)
|
---|
1503 | {
|
---|
1504 | r[i_] = buf[i_];
|
---|
1505 | }
|
---|
1506 | }
|
---|
1507 | else
|
---|
1508 | {
|
---|
1509 |
|
---|
1510 | //
|
---|
1511 | // M is non-smooth or non-even, general code (circular/non-circular):
|
---|
1512 | // * first part is the same for circular and non-circular
|
---|
1513 | // convolutions. zero padding, FFTs, inverse FFTs
|
---|
1514 | // * second part differs:
|
---|
1515 | // * for non-circular convolution we just copy array
|
---|
1516 | // * for circular convolution we add array tail to its head
|
---|
1517 | //
|
---|
1518 | p = ftbase.ftbasefindsmootheven(m+n-1);
|
---|
1519 | buf = new double[p];
|
---|
1520 | for(i_=0; i_<=m-1;i_++)
|
---|
1521 | {
|
---|
1522 | buf[i_] = a[i_];
|
---|
1523 | }
|
---|
1524 | for(i=m; i<=p-1; i++)
|
---|
1525 | {
|
---|
1526 | buf[i] = 0;
|
---|
1527 | }
|
---|
1528 | buf2 = new double[p];
|
---|
1529 | for(i_=0; i_<=n-1;i_++)
|
---|
1530 | {
|
---|
1531 | buf2[i_] = b[i_];
|
---|
1532 | }
|
---|
1533 | for(i=n; i<=p-1; i++)
|
---|
1534 | {
|
---|
1535 | buf2[i] = 0;
|
---|
1536 | }
|
---|
1537 | buf3 = new double[p];
|
---|
1538 | ftbase.ftbasegeneratecomplexfftplan(p/2, ref plan);
|
---|
1539 | fft.fftr1dinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
1540 | fft.fftr1dinternaleven(ref buf2, p, ref buf3, ref plan);
|
---|
1541 | buf[0] = buf[0]*buf2[0];
|
---|
1542 | buf[1] = buf[1]*buf2[1];
|
---|
1543 | for(i=1; i<=p/2-1; i++)
|
---|
1544 | {
|
---|
1545 | ax = buf[2*i+0];
|
---|
1546 | ay = buf[2*i+1];
|
---|
1547 | bx = buf2[2*i+0];
|
---|
1548 | by = buf2[2*i+1];
|
---|
1549 | tx = ax*bx-ay*by;
|
---|
1550 | ty = ax*by+ay*bx;
|
---|
1551 | buf[2*i+0] = tx;
|
---|
1552 | buf[2*i+1] = ty;
|
---|
1553 | }
|
---|
1554 | fft.fftr1dinvinternaleven(ref buf, p, ref buf3, ref plan);
|
---|
1555 | if( circular )
|
---|
1556 | {
|
---|
1557 |
|
---|
1558 | //
|
---|
1559 | // circular, add tail to head
|
---|
1560 | //
|
---|
1561 | r = new double[m];
|
---|
1562 | for(i_=0; i_<=m-1;i_++)
|
---|
1563 | {
|
---|
1564 | r[i_] = buf[i_];
|
---|
1565 | }
|
---|
1566 | if( n>=2 )
|
---|
1567 | {
|
---|
1568 | i1_ = (m) - (0);
|
---|
1569 | for(i_=0; i_<=n-2;i_++)
|
---|
1570 | {
|
---|
1571 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1572 | }
|
---|
1573 | }
|
---|
1574 | }
|
---|
1575 | else
|
---|
1576 | {
|
---|
1577 |
|
---|
1578 | //
|
---|
1579 | // non-circular, just copy
|
---|
1580 | //
|
---|
1581 | r = new double[m+n-1];
|
---|
1582 | for(i_=0; i_<=m+n-2;i_++)
|
---|
1583 | {
|
---|
1584 | r[i_] = buf[i_];
|
---|
1585 | }
|
---|
1586 | }
|
---|
1587 | }
|
---|
1588 | return;
|
---|
1589 | }
|
---|
1590 |
|
---|
1591 | //
|
---|
1592 | // overlap-add method
|
---|
1593 | //
|
---|
1594 | if( alg==2 )
|
---|
1595 | {
|
---|
1596 | System.Diagnostics.Debug.Assert((q+n-1)%2==0, "ConvR1DX: internal error!");
|
---|
1597 | buf = new double[q+n-1];
|
---|
1598 | buf2 = new double[q+n-1];
|
---|
1599 | buf3 = new double[q+n-1];
|
---|
1600 | ftbase.ftbasegeneratecomplexfftplan((q+n-1)/2, ref plan);
|
---|
1601 |
|
---|
1602 | //
|
---|
1603 | // prepare R
|
---|
1604 | //
|
---|
1605 | if( circular )
|
---|
1606 | {
|
---|
1607 | r = new double[m];
|
---|
1608 | for(i=0; i<=m-1; i++)
|
---|
1609 | {
|
---|
1610 | r[i] = 0;
|
---|
1611 | }
|
---|
1612 | }
|
---|
1613 | else
|
---|
1614 | {
|
---|
1615 | r = new double[m+n-1];
|
---|
1616 | for(i=0; i<=m+n-2; i++)
|
---|
1617 | {
|
---|
1618 | r[i] = 0;
|
---|
1619 | }
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | //
|
---|
1623 | // pre-calculated FFT(B)
|
---|
1624 | //
|
---|
1625 | for(i_=0; i_<=n-1;i_++)
|
---|
1626 | {
|
---|
1627 | buf2[i_] = b[i_];
|
---|
1628 | }
|
---|
1629 | for(j=n; j<=q+n-2; j++)
|
---|
1630 | {
|
---|
1631 | buf2[j] = 0;
|
---|
1632 | }
|
---|
1633 | fft.fftr1dinternaleven(ref buf2, q+n-1, ref buf3, ref plan);
|
---|
1634 |
|
---|
1635 | //
|
---|
1636 | // main overlap-add cycle
|
---|
1637 | //
|
---|
1638 | i = 0;
|
---|
1639 | while( i<=m-1 )
|
---|
1640 | {
|
---|
1641 | p = Math.Min(q, m-i);
|
---|
1642 | i1_ = (i) - (0);
|
---|
1643 | for(i_=0; i_<=p-1;i_++)
|
---|
1644 | {
|
---|
1645 | buf[i_] = a[i_+i1_];
|
---|
1646 | }
|
---|
1647 | for(j=p; j<=q+n-2; j++)
|
---|
1648 | {
|
---|
1649 | buf[j] = 0;
|
---|
1650 | }
|
---|
1651 | fft.fftr1dinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
1652 | buf[0] = buf[0]*buf2[0];
|
---|
1653 | buf[1] = buf[1]*buf2[1];
|
---|
1654 | for(j=1; j<=(q+n-1)/2-1; j++)
|
---|
1655 | {
|
---|
1656 | ax = buf[2*j+0];
|
---|
1657 | ay = buf[2*j+1];
|
---|
1658 | bx = buf2[2*j+0];
|
---|
1659 | by = buf2[2*j+1];
|
---|
1660 | tx = ax*bx-ay*by;
|
---|
1661 | ty = ax*by+ay*bx;
|
---|
1662 | buf[2*j+0] = tx;
|
---|
1663 | buf[2*j+1] = ty;
|
---|
1664 | }
|
---|
1665 | fft.fftr1dinvinternaleven(ref buf, q+n-1, ref buf3, ref plan);
|
---|
1666 | if( circular )
|
---|
1667 | {
|
---|
1668 | j1 = Math.Min(i+p+n-2, m-1)-i;
|
---|
1669 | j2 = j1+1;
|
---|
1670 | }
|
---|
1671 | else
|
---|
1672 | {
|
---|
1673 | j1 = p+n-2;
|
---|
1674 | j2 = j1+1;
|
---|
1675 | }
|
---|
1676 | i1_ = (0) - (i);
|
---|
1677 | for(i_=i; i_<=i+j1;i_++)
|
---|
1678 | {
|
---|
1679 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1680 | }
|
---|
1681 | if( p+n-2>=j2 )
|
---|
1682 | {
|
---|
1683 | i1_ = (j2) - (0);
|
---|
1684 | for(i_=0; i_<=p+n-2-j2;i_++)
|
---|
1685 | {
|
---|
1686 | r[i_] = r[i_] + buf[i_+i1_];
|
---|
1687 | }
|
---|
1688 | }
|
---|
1689 | i = i+p;
|
---|
1690 | }
|
---|
1691 | return;
|
---|
1692 | }
|
---|
1693 | }
|
---|
1694 | }
|
---|
1695 | }
|
---|