1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class clu
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | LU decomposition of a complex general matrix of size MxN
|
---|
35 |
|
---|
36 | The subroutine calculates the LU decomposition of a rectangular general
|
---|
37 | matrix with partial pivoting (with row permutations).
|
---|
38 |
|
---|
39 | Input parameters:
|
---|
40 | A - matrix A whose indexes range within [0..M-1, 0..N-1].
|
---|
41 | M - number of rows in matrix A.
|
---|
42 | N - number of columns in matrix A.
|
---|
43 |
|
---|
44 | Output parameters:
|
---|
45 | A - matrices L and U in compact form (see below).
|
---|
46 | Array whose indexes range within [0..M-1, 0..N-1].
|
---|
47 | Pivots - permutation matrix in compact form (see below).
|
---|
48 | Array whose index ranges within [0..Min(M-1,N-1)].
|
---|
49 |
|
---|
50 | Matrix A is represented as A = P * L * U, where P is a permutation matrix,
|
---|
51 | matrix L - lower triangular (or lower trapezoid, if M>N) matrix,
|
---|
52 | U - upper triangular (or upper trapezoid, if M<N) matrix.
|
---|
53 |
|
---|
54 | Let M be equal to 4 and N be equal to 3:
|
---|
55 |
|
---|
56 | ( 1 ) ( U11 U12 U13 )
|
---|
57 | A = P1 * P2 * P3 * ( L21 1 ) * ( U22 U23 )
|
---|
58 | ( L31 L32 1 ) ( U33 )
|
---|
59 | ( L41 L42 L43 )
|
---|
60 |
|
---|
61 | Matrix L has size MxMin(M,N), matrix U has size Min(M,N)xN, matrix P(i) is
|
---|
62 | a permutation of the identity matrix of size MxM with numbers I and Pivots[I].
|
---|
63 |
|
---|
64 | The algorithm returns array Pivots and the following matrix which replaces
|
---|
65 | matrix A and contains matrices L and U in compact form (the example applies
|
---|
66 | to M=4, N=3).
|
---|
67 |
|
---|
68 | ( U11 U12 U13 )
|
---|
69 | ( L21 U22 U23 )
|
---|
70 | ( L31 L32 U33 )
|
---|
71 | ( L41 L42 L43 )
|
---|
72 |
|
---|
73 | As we can see, the unit diagonal isn't stored.
|
---|
74 |
|
---|
75 | -- LAPACK routine (version 3.0) --
|
---|
76 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
77 | Courant Institute, Argonne National Lab, and Rice University
|
---|
78 | June 30, 1992
|
---|
79 | *************************************************************************/
|
---|
80 | public static void cmatrixlu(ref AP.Complex[,] a,
|
---|
81 | int m,
|
---|
82 | int n,
|
---|
83 | ref int[] pivots)
|
---|
84 | {
|
---|
85 | int i = 0;
|
---|
86 | int j = 0;
|
---|
87 | int jp = 0;
|
---|
88 | AP.Complex[] t1 = new AP.Complex[0];
|
---|
89 | AP.Complex s = 0;
|
---|
90 | int i_ = 0;
|
---|
91 |
|
---|
92 | pivots = new int[Math.Min(m-1, n-1)+1];
|
---|
93 | t1 = new AP.Complex[Math.Max(m-1, n-1)+1];
|
---|
94 | System.Diagnostics.Debug.Assert(m>=0 & n>=0, "Error in LUDecomposition: incorrect function arguments");
|
---|
95 |
|
---|
96 | //
|
---|
97 | // Quick return if possible
|
---|
98 | //
|
---|
99 | if( m==0 | n==0 )
|
---|
100 | {
|
---|
101 | return;
|
---|
102 | }
|
---|
103 | for(j=0; j<=Math.Min(m-1, n-1); j++)
|
---|
104 | {
|
---|
105 |
|
---|
106 | //
|
---|
107 | // Find pivot and test for singularity.
|
---|
108 | //
|
---|
109 | jp = j;
|
---|
110 | for(i=j+1; i<=m-1; i++)
|
---|
111 | {
|
---|
112 | if( (double)(AP.Math.AbsComplex(a[i,j]))>(double)(AP.Math.AbsComplex(a[jp,j])) )
|
---|
113 | {
|
---|
114 | jp = i;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | pivots[j] = jp;
|
---|
118 | if( a[jp,j]!=0 )
|
---|
119 | {
|
---|
120 |
|
---|
121 | //
|
---|
122 | //Apply the interchange to rows
|
---|
123 | //
|
---|
124 | if( jp!=j )
|
---|
125 | {
|
---|
126 | for(i_=0; i_<=n-1;i_++)
|
---|
127 | {
|
---|
128 | t1[i_] = a[j,i_];
|
---|
129 | }
|
---|
130 | for(i_=0; i_<=n-1;i_++)
|
---|
131 | {
|
---|
132 | a[j,i_] = a[jp,i_];
|
---|
133 | }
|
---|
134 | for(i_=0; i_<=n-1;i_++)
|
---|
135 | {
|
---|
136 | a[jp,i_] = t1[i_];
|
---|
137 | }
|
---|
138 | }
|
---|
139 |
|
---|
140 | //
|
---|
141 | //Compute elements J+1:M of J-th column.
|
---|
142 | //
|
---|
143 | if( j<m )
|
---|
144 | {
|
---|
145 | jp = j+1;
|
---|
146 | s = 1/a[j,j];
|
---|
147 | for(i_=jp; i_<=m-1;i_++)
|
---|
148 | {
|
---|
149 | a[i_,j] = s*a[i_,j];
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|
153 | if( j<Math.Min(m, n)-1 )
|
---|
154 | {
|
---|
155 |
|
---|
156 | //
|
---|
157 | //Update trailing submatrix.
|
---|
158 | //
|
---|
159 | jp = j+1;
|
---|
160 | for(i=j+1; i<=m-1; i++)
|
---|
161 | {
|
---|
162 | s = a[i,j];
|
---|
163 | for(i_=jp; i_<=n-1;i_++)
|
---|
164 | {
|
---|
165 | a[i,i_] = a[i,i_] - s*a[j,i_];
|
---|
166 | }
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 | public static void complexludecomposition(ref AP.Complex[,] a,
|
---|
174 | int m,
|
---|
175 | int n,
|
---|
176 | ref int[] pivots)
|
---|
177 | {
|
---|
178 | int i = 0;
|
---|
179 | int j = 0;
|
---|
180 | int jp = 0;
|
---|
181 | AP.Complex[] t1 = new AP.Complex[0];
|
---|
182 | AP.Complex s = 0;
|
---|
183 | int i_ = 0;
|
---|
184 |
|
---|
185 | pivots = new int[Math.Min(m, n)+1];
|
---|
186 | t1 = new AP.Complex[Math.Max(m, n)+1];
|
---|
187 | System.Diagnostics.Debug.Assert(m>=0 & n>=0, "Error in ComplexLUDecomposition: incorrect function arguments");
|
---|
188 |
|
---|
189 | //
|
---|
190 | // Quick return if possible
|
---|
191 | //
|
---|
192 | if( m==0 | n==0 )
|
---|
193 | {
|
---|
194 | return;
|
---|
195 | }
|
---|
196 | for(j=1; j<=Math.Min(m, n); j++)
|
---|
197 | {
|
---|
198 |
|
---|
199 | //
|
---|
200 | // Find pivot and test for singularity.
|
---|
201 | //
|
---|
202 | jp = j;
|
---|
203 | for(i=j+1; i<=m; i++)
|
---|
204 | {
|
---|
205 | if( (double)(AP.Math.AbsComplex(a[i,j]))>(double)(AP.Math.AbsComplex(a[jp,j])) )
|
---|
206 | {
|
---|
207 | jp = i;
|
---|
208 | }
|
---|
209 | }
|
---|
210 | pivots[j] = jp;
|
---|
211 | if( a[jp,j]!=0 )
|
---|
212 | {
|
---|
213 |
|
---|
214 | //
|
---|
215 | //Apply the interchange to rows
|
---|
216 | //
|
---|
217 | if( jp!=j )
|
---|
218 | {
|
---|
219 | for(i_=1; i_<=n;i_++)
|
---|
220 | {
|
---|
221 | t1[i_] = a[j,i_];
|
---|
222 | }
|
---|
223 | for(i_=1; i_<=n;i_++)
|
---|
224 | {
|
---|
225 | a[j,i_] = a[jp,i_];
|
---|
226 | }
|
---|
227 | for(i_=1; i_<=n;i_++)
|
---|
228 | {
|
---|
229 | a[jp,i_] = t1[i_];
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | //
|
---|
234 | //Compute elements J+1:M of J-th column.
|
---|
235 | //
|
---|
236 | if( j<m )
|
---|
237 | {
|
---|
238 | jp = j+1;
|
---|
239 | s = 1/a[j,j];
|
---|
240 | for(i_=jp; i_<=m;i_++)
|
---|
241 | {
|
---|
242 | a[i_,j] = s*a[i_,j];
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|
246 | if( j<Math.Min(m, n) )
|
---|
247 | {
|
---|
248 |
|
---|
249 | //
|
---|
250 | //Update trailing submatrix.
|
---|
251 | //
|
---|
252 | jp = j+1;
|
---|
253 | for(i=j+1; i<=m; i++)
|
---|
254 | {
|
---|
255 | s = a[i,j];
|
---|
256 | for(i_=jp; i_<=n;i_++)
|
---|
257 | {
|
---|
258 | a[i,i_] = a[i,i_] - s*a[j,i_];
|
---|
259 | }
|
---|
260 | }
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 |
|
---|
265 |
|
---|
266 | public static void complexludecompositionunpacked(AP.Complex[,] a,
|
---|
267 | int m,
|
---|
268 | int n,
|
---|
269 | ref AP.Complex[,] l,
|
---|
270 | ref AP.Complex[,] u,
|
---|
271 | ref int[] pivots)
|
---|
272 | {
|
---|
273 | int i = 0;
|
---|
274 | int j = 0;
|
---|
275 | int minmn = 0;
|
---|
276 |
|
---|
277 | a = (AP.Complex[,])a.Clone();
|
---|
278 |
|
---|
279 | if( m==0 | n==0 )
|
---|
280 | {
|
---|
281 | return;
|
---|
282 | }
|
---|
283 | minmn = Math.Min(m, n);
|
---|
284 | l = new AP.Complex[m+1, minmn+1];
|
---|
285 | u = new AP.Complex[minmn+1, n+1];
|
---|
286 | complexludecomposition(ref a, m, n, ref pivots);
|
---|
287 | for(i=1; i<=m; i++)
|
---|
288 | {
|
---|
289 | for(j=1; j<=minmn; j++)
|
---|
290 | {
|
---|
291 | if( j>i )
|
---|
292 | {
|
---|
293 | l[i,j] = 0;
|
---|
294 | }
|
---|
295 | if( j==i )
|
---|
296 | {
|
---|
297 | l[i,j] = 1;
|
---|
298 | }
|
---|
299 | if( j<i )
|
---|
300 | {
|
---|
301 | l[i,j] = a[i,j];
|
---|
302 | }
|
---|
303 | }
|
---|
304 | }
|
---|
305 | for(i=1; i<=minmn; i++)
|
---|
306 | {
|
---|
307 | for(j=1; j<=n; j++)
|
---|
308 | {
|
---|
309 | if( j<i )
|
---|
310 | {
|
---|
311 | u[i,j] = 0;
|
---|
312 | }
|
---|
313 | if( j>=i )
|
---|
314 | {
|
---|
315 | u[i,j] = a[i,j];
|
---|
316 | }
|
---|
317 | }
|
---|
318 | }
|
---|
319 | }
|
---|
320 | }
|
---|
321 | }
|
---|