[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
| 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
| 15 |
|
---|
| 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
| 20 |
|
---|
| 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
| 23 |
|
---|
| 24 | >>> END OF LICENSE >>>
|
---|
| 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
| 29 | namespace alglib
|
---|
| 30 | {
|
---|
| 31 | public class cinverse
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Inversion of a complex matrix given by its LU decomposition.
|
---|
| 35 |
|
---|
| 36 | Input parameters:
|
---|
| 37 | A - LU decomposition of the matrix (output of CMatrixLU subroutine).
|
---|
| 38 | Pivots - table of permutations which were made during the LU decomposition
|
---|
| 39 | (the output of CMatrixLU subroutine).
|
---|
| 40 | N - size of matrix A.
|
---|
| 41 |
|
---|
| 42 | Output parameters:
|
---|
| 43 | A - inverse of matrix A.
|
---|
| 44 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 45 |
|
---|
| 46 | Result:
|
---|
| 47 | True, if the matrix is not singular.
|
---|
| 48 | False, if the matrix is singular.
|
---|
| 49 |
|
---|
| 50 | -- LAPACK routine (version 3.0) --
|
---|
| 51 | Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
---|
| 52 | Courant Institute, Argonne National Lab, and Rice University
|
---|
| 53 | February 29, 1992
|
---|
| 54 | *************************************************************************/
|
---|
| 55 | public static bool cmatrixluinverse(ref AP.Complex[,] a,
|
---|
| 56 | ref int[] pivots,
|
---|
| 57 | int n)
|
---|
| 58 | {
|
---|
| 59 | bool result = new bool();
|
---|
| 60 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 61 | int i = 0;
|
---|
| 62 | int iws = 0;
|
---|
| 63 | int j = 0;
|
---|
| 64 | int jb = 0;
|
---|
| 65 | int jj = 0;
|
---|
| 66 | int jp = 0;
|
---|
| 67 | AP.Complex v = 0;
|
---|
| 68 | int i_ = 0;
|
---|
| 69 |
|
---|
| 70 | result = true;
|
---|
| 71 |
|
---|
| 72 | //
|
---|
| 73 | // Quick return if possible
|
---|
| 74 | //
|
---|
| 75 | if( n==0 )
|
---|
| 76 | {
|
---|
| 77 | return result;
|
---|
| 78 | }
|
---|
| 79 | work = new AP.Complex[n-1+1];
|
---|
| 80 |
|
---|
| 81 | //
|
---|
| 82 | // Form inv(U)
|
---|
| 83 | //
|
---|
| 84 | if( !ctrinverse.cmatrixtrinverse(ref a, n, true, false) )
|
---|
| 85 | {
|
---|
| 86 | result = false;
|
---|
| 87 | return result;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | //
|
---|
| 91 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
| 92 | //
|
---|
| 93 | for(j=n-1; j>=0; j--)
|
---|
| 94 | {
|
---|
| 95 |
|
---|
| 96 | //
|
---|
| 97 | // Copy current column of L to WORK and replace with zeros.
|
---|
| 98 | //
|
---|
| 99 | for(i=j+1; i<=n-1; i++)
|
---|
| 100 | {
|
---|
| 101 | work[i] = a[i,j];
|
---|
| 102 | a[i,j] = 0;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | //
|
---|
| 106 | // Compute current column of inv(A).
|
---|
| 107 | //
|
---|
| 108 | if( j<n-1 )
|
---|
| 109 | {
|
---|
| 110 | for(i=0; i<=n-1; i++)
|
---|
| 111 | {
|
---|
| 112 | v = 0.0;
|
---|
| 113 | for(i_=j+1; i_<=n-1;i_++)
|
---|
| 114 | {
|
---|
| 115 | v += a[i,i_]*work[i_];
|
---|
| 116 | }
|
---|
| 117 | a[i,j] = a[i,j]-v;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | //
|
---|
| 123 | // Apply column interchanges.
|
---|
| 124 | //
|
---|
| 125 | for(j=n-2; j>=0; j--)
|
---|
| 126 | {
|
---|
| 127 | jp = pivots[j];
|
---|
| 128 | if( jp!=j )
|
---|
| 129 | {
|
---|
| 130 | for(i_=0; i_<=n-1;i_++)
|
---|
| 131 | {
|
---|
| 132 | work[i_] = a[i_,j];
|
---|
| 133 | }
|
---|
| 134 | for(i_=0; i_<=n-1;i_++)
|
---|
| 135 | {
|
---|
| 136 | a[i_,j] = a[i_,jp];
|
---|
| 137 | }
|
---|
| 138 | for(i_=0; i_<=n-1;i_++)
|
---|
| 139 | {
|
---|
| 140 | a[i_,jp] = work[i_];
|
---|
| 141 | }
|
---|
| 142 | }
|
---|
| 143 | }
|
---|
| 144 | return result;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 |
|
---|
| 148 | /*************************************************************************
|
---|
| 149 | Inversion of a general complex matrix.
|
---|
| 150 |
|
---|
| 151 | Input parameters:
|
---|
| 152 | A - matrix. Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 153 | N - size of matrix A.
|
---|
| 154 |
|
---|
| 155 | Output parameters:
|
---|
| 156 | A - inverse of matrix A.
|
---|
| 157 | Array whose indexes range within [0..N-1, 0..N-1].
|
---|
| 158 |
|
---|
| 159 | Result:
|
---|
| 160 | True, if the matrix is not singular.
|
---|
| 161 | False, if the matrix is singular.
|
---|
| 162 |
|
---|
| 163 | -- ALGLIB --
|
---|
| 164 | Copyright 2005 by Bochkanov Sergey
|
---|
| 165 | *************************************************************************/
|
---|
| 166 | public static bool cmatrixinverse(ref AP.Complex[,] a,
|
---|
| 167 | int n)
|
---|
| 168 | {
|
---|
| 169 | bool result = new bool();
|
---|
| 170 | int[] pivots = new int[0];
|
---|
| 171 |
|
---|
| 172 | clu.cmatrixlu(ref a, n, n, ref pivots);
|
---|
| 173 | result = cmatrixluinverse(ref a, ref pivots, n);
|
---|
| 174 | return result;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 |
|
---|
| 178 | public static bool complexinverselu(ref AP.Complex[,] a,
|
---|
| 179 | ref int[] pivots,
|
---|
| 180 | int n)
|
---|
| 181 | {
|
---|
| 182 | bool result = new bool();
|
---|
| 183 | AP.Complex[] work = new AP.Complex[0];
|
---|
| 184 | int i = 0;
|
---|
| 185 | int iws = 0;
|
---|
| 186 | int j = 0;
|
---|
| 187 | int jb = 0;
|
---|
| 188 | int jj = 0;
|
---|
| 189 | int jp = 0;
|
---|
| 190 | int jp1 = 0;
|
---|
| 191 | AP.Complex v = 0;
|
---|
| 192 | int i_ = 0;
|
---|
| 193 |
|
---|
| 194 | result = true;
|
---|
| 195 |
|
---|
| 196 | //
|
---|
| 197 | // Quick return if possible
|
---|
| 198 | //
|
---|
| 199 | if( n==0 )
|
---|
| 200 | {
|
---|
| 201 | return result;
|
---|
| 202 | }
|
---|
| 203 | work = new AP.Complex[n+1];
|
---|
| 204 |
|
---|
| 205 | //
|
---|
| 206 | // Form inv(U)
|
---|
| 207 | //
|
---|
| 208 | if( !ctrinverse.complexinvtriangular(ref a, n, true, false) )
|
---|
| 209 | {
|
---|
| 210 | result = false;
|
---|
| 211 | return result;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | //
|
---|
| 215 | // Solve the equation inv(A)*L = inv(U) for inv(A).
|
---|
| 216 | //
|
---|
| 217 | for(j=n; j>=1; j--)
|
---|
| 218 | {
|
---|
| 219 |
|
---|
| 220 | //
|
---|
| 221 | // Copy current column of L to WORK and replace with zeros.
|
---|
| 222 | //
|
---|
| 223 | for(i=j+1; i<=n; i++)
|
---|
| 224 | {
|
---|
| 225 | work[i] = a[i,j];
|
---|
| 226 | a[i,j] = 0;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | //
|
---|
| 230 | // Compute current column of inv(A).
|
---|
| 231 | //
|
---|
| 232 | if( j<n )
|
---|
| 233 | {
|
---|
| 234 | jp1 = j+1;
|
---|
| 235 | for(i=1; i<=n; i++)
|
---|
| 236 | {
|
---|
| 237 | v = 0.0;
|
---|
| 238 | for(i_=jp1; i_<=n;i_++)
|
---|
| 239 | {
|
---|
| 240 | v += a[i,i_]*work[i_];
|
---|
| 241 | }
|
---|
| 242 | a[i,j] = a[i,j]-v;
|
---|
| 243 | }
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | //
|
---|
| 248 | // Apply column interchanges.
|
---|
| 249 | //
|
---|
| 250 | for(j=n-1; j>=1; j--)
|
---|
| 251 | {
|
---|
| 252 | jp = pivots[j];
|
---|
| 253 | if( jp!=j )
|
---|
| 254 | {
|
---|
| 255 | for(i_=1; i_<=n;i_++)
|
---|
| 256 | {
|
---|
| 257 | work[i_] = a[i_,j];
|
---|
| 258 | }
|
---|
| 259 | for(i_=1; i_<=n;i_++)
|
---|
| 260 | {
|
---|
| 261 | a[i_,j] = a[i_,jp];
|
---|
| 262 | }
|
---|
| 263 | for(i_=1; i_<=n;i_++)
|
---|
| 264 | {
|
---|
| 265 | a[i_,jp] = work[i_];
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | }
|
---|
| 269 | return result;
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 |
|
---|
| 273 | public static bool complexinverse(ref AP.Complex[,] a,
|
---|
| 274 | int n)
|
---|
| 275 | {
|
---|
| 276 | bool result = new bool();
|
---|
| 277 | int[] pivots = new int[0];
|
---|
| 278 |
|
---|
| 279 | clu.complexludecomposition(ref a, n, n, ref pivots);
|
---|
| 280 | result = complexinverselu(ref a, ref pivots, n);
|
---|
| 281 | return result;
|
---|
| 282 | }
|
---|
| 283 | }
|
---|
| 284 | }
|
---|