1 | /*************************************************************************
|
---|
2 | >>> SOURCE LICENSE >>>
|
---|
3 | This program is free software; you can redistribute it and/or modify
|
---|
4 | it under the terms of the GNU General Public License as published by
|
---|
5 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
6 | License, or (at your option) any later version.
|
---|
7 |
|
---|
8 | This program is distributed in the hope that it will be useful,
|
---|
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
11 | GNU General Public License for more details.
|
---|
12 |
|
---|
13 | A copy of the GNU General Public License is available at
|
---|
14 | http://www.fsf.org/licensing/licenses
|
---|
15 |
|
---|
16 | >>> END OF LICENSE >>>
|
---|
17 | *************************************************************************/
|
---|
18 |
|
---|
19 | using System;
|
---|
20 |
|
---|
21 | namespace alglib
|
---|
22 | {
|
---|
23 | public class chebyshev
|
---|
24 | {
|
---|
25 | /*************************************************************************
|
---|
26 | Calculation of the value of the Chebyshev polynomials of the
|
---|
27 | first and second kinds.
|
---|
28 |
|
---|
29 | Parameters:
|
---|
30 | r - polynomial kind, either 1 or 2.
|
---|
31 | n - degree, n>=0
|
---|
32 | x - argument, -1 <= x <= 1
|
---|
33 |
|
---|
34 | Result:
|
---|
35 | the value of the Chebyshev polynomial at x
|
---|
36 | *************************************************************************/
|
---|
37 | public static double chebyshevcalculate(int r,
|
---|
38 | int n,
|
---|
39 | double x)
|
---|
40 | {
|
---|
41 | double result = 0;
|
---|
42 | int i = 0;
|
---|
43 | double a = 0;
|
---|
44 | double b = 0;
|
---|
45 |
|
---|
46 |
|
---|
47 | //
|
---|
48 | // Prepare A and B
|
---|
49 | //
|
---|
50 | if( r==1 )
|
---|
51 | {
|
---|
52 | a = 1;
|
---|
53 | b = x;
|
---|
54 | }
|
---|
55 | else
|
---|
56 | {
|
---|
57 | a = 1;
|
---|
58 | b = 2*x;
|
---|
59 | }
|
---|
60 |
|
---|
61 | //
|
---|
62 | // Special cases: N=0 or N=1
|
---|
63 | //
|
---|
64 | if( n==0 )
|
---|
65 | {
|
---|
66 | result = a;
|
---|
67 | return result;
|
---|
68 | }
|
---|
69 | if( n==1 )
|
---|
70 | {
|
---|
71 | result = b;
|
---|
72 | return result;
|
---|
73 | }
|
---|
74 |
|
---|
75 | //
|
---|
76 | // General case: N>=2
|
---|
77 | //
|
---|
78 | for(i=2; i<=n; i++)
|
---|
79 | {
|
---|
80 | result = 2*x*b-a;
|
---|
81 | a = b;
|
---|
82 | b = result;
|
---|
83 | }
|
---|
84 | return result;
|
---|
85 | }
|
---|
86 |
|
---|
87 |
|
---|
88 | /*************************************************************************
|
---|
89 | Summation of Chebyshev polynomials using Clenshaws recurrence formula.
|
---|
90 |
|
---|
91 | This routine calculates
|
---|
92 | c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x)
|
---|
93 | or
|
---|
94 | c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x)
|
---|
95 | depending on the R.
|
---|
96 |
|
---|
97 | Parameters:
|
---|
98 | r - polynomial kind, either 1 or 2.
|
---|
99 | n - degree, n>=0
|
---|
100 | x - argument
|
---|
101 |
|
---|
102 | Result:
|
---|
103 | the value of the Chebyshev polynomial at x
|
---|
104 | *************************************************************************/
|
---|
105 | public static double chebyshevsum(ref double[] c,
|
---|
106 | int r,
|
---|
107 | int n,
|
---|
108 | double x)
|
---|
109 | {
|
---|
110 | double result = 0;
|
---|
111 | double b1 = 0;
|
---|
112 | double b2 = 0;
|
---|
113 | int i = 0;
|
---|
114 |
|
---|
115 | b1 = 0;
|
---|
116 | b2 = 0;
|
---|
117 | for(i=n; i>=1; i--)
|
---|
118 | {
|
---|
119 | result = 2*x*b1-b2+c[i];
|
---|
120 | b2 = b1;
|
---|
121 | b1 = result;
|
---|
122 | }
|
---|
123 | if( r==1 )
|
---|
124 | {
|
---|
125 | result = -b2+x*b1+c[0];
|
---|
126 | }
|
---|
127 | else
|
---|
128 | {
|
---|
129 | result = -b2+2*x*b1+c[0];
|
---|
130 | }
|
---|
131 | return result;
|
---|
132 | }
|
---|
133 |
|
---|
134 |
|
---|
135 | /*************************************************************************
|
---|
136 | Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N
|
---|
137 |
|
---|
138 | Input parameters:
|
---|
139 | N - polynomial degree, n>=0
|
---|
140 |
|
---|
141 | Output parameters:
|
---|
142 | C - coefficients
|
---|
143 | *************************************************************************/
|
---|
144 | public static void chebyshevcoefficients(int n,
|
---|
145 | ref double[] c)
|
---|
146 | {
|
---|
147 | int i = 0;
|
---|
148 |
|
---|
149 | c = new double[n+1];
|
---|
150 | for(i=0; i<=n; i++)
|
---|
151 | {
|
---|
152 | c[i] = 0;
|
---|
153 | }
|
---|
154 | if( n==0 | n==1 )
|
---|
155 | {
|
---|
156 | c[n] = 1;
|
---|
157 | }
|
---|
158 | else
|
---|
159 | {
|
---|
160 | c[n] = Math.Exp((n-1)*Math.Log(2));
|
---|
161 | for(i=0; i<=n/2-1; i++)
|
---|
162 | {
|
---|
163 | c[n-2*(i+1)] = -(c[n-2*i]*(n-2*i)*(n-2*i-1)/4/(i+1)/(n-i-1));
|
---|
164 | }
|
---|
165 | }
|
---|
166 | }
|
---|
167 |
|
---|
168 |
|
---|
169 | /*************************************************************************
|
---|
170 | Conversion of a series of Chebyshev polynomials to a power series.
|
---|
171 |
|
---|
172 | Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as
|
---|
173 | B[0] + B[1]*X + ... + B[N]*X^N.
|
---|
174 |
|
---|
175 | Input parameters:
|
---|
176 | A - Chebyshev series coefficients
|
---|
177 | N - degree, N>=0
|
---|
178 |
|
---|
179 | Output parameters
|
---|
180 | B - power series coefficients
|
---|
181 | *************************************************************************/
|
---|
182 | public static void fromchebyshev(ref double[] a,
|
---|
183 | int n,
|
---|
184 | ref double[] b)
|
---|
185 | {
|
---|
186 | int i = 0;
|
---|
187 | int k = 0;
|
---|
188 | double e = 0;
|
---|
189 | double d = 0;
|
---|
190 |
|
---|
191 | b = new double[n+1];
|
---|
192 | for(i=0; i<=n; i++)
|
---|
193 | {
|
---|
194 | b[i] = 0;
|
---|
195 | }
|
---|
196 | d = 0;
|
---|
197 | i = 0;
|
---|
198 | do
|
---|
199 | {
|
---|
200 | k = i;
|
---|
201 | do
|
---|
202 | {
|
---|
203 | e = b[k];
|
---|
204 | b[k] = 0;
|
---|
205 | if( i<=1 & k==i )
|
---|
206 | {
|
---|
207 | b[k] = 1;
|
---|
208 | }
|
---|
209 | else
|
---|
210 | {
|
---|
211 | if( i!=0 )
|
---|
212 | {
|
---|
213 | b[k] = 2*d;
|
---|
214 | }
|
---|
215 | if( k>i+1 )
|
---|
216 | {
|
---|
217 | b[k] = b[k]-b[k-2];
|
---|
218 | }
|
---|
219 | }
|
---|
220 | d = e;
|
---|
221 | k = k+1;
|
---|
222 | }
|
---|
223 | while( k<=n );
|
---|
224 | d = b[i];
|
---|
225 | e = 0;
|
---|
226 | k = i;
|
---|
227 | while( k<=n )
|
---|
228 | {
|
---|
229 | e = e+b[k]*a[k];
|
---|
230 | k = k+2;
|
---|
231 | }
|
---|
232 | b[i] = e;
|
---|
233 | i = i+1;
|
---|
234 | }
|
---|
235 | while( i<=n );
|
---|
236 | }
|
---|
237 | }
|
---|
238 | }
|
---|