[2563] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).
|
---|
| 3 |
|
---|
| 4 | >>> SOURCE LICENSE >>>
|
---|
| 5 | This program is free software; you can redistribute it and/or modify
|
---|
| 6 | it under the terms of the GNU General Public License as published by
|
---|
| 7 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 8 | License, or (at your option) any later version.
|
---|
| 9 |
|
---|
| 10 | This program is distributed in the hope that it will be useful,
|
---|
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | GNU General Public License for more details.
|
---|
| 14 |
|
---|
| 15 | A copy of the GNU General Public License is available at
|
---|
| 16 | http://www.fsf.org/licensing/licenses
|
---|
| 17 |
|
---|
| 18 | >>> END OF LICENSE >>>
|
---|
| 19 | *************************************************************************/
|
---|
| 20 |
|
---|
| 21 | using System;
|
---|
| 22 |
|
---|
| 23 | namespace alglib
|
---|
| 24 | {
|
---|
| 25 | public class cdet
|
---|
| 26 | {
|
---|
| 27 | /*************************************************************************
|
---|
| 28 | Determinant calculation of the matrix given by its LU decomposition.
|
---|
| 29 |
|
---|
| 30 | Input parameters:
|
---|
| 31 | A - LU decomposition of the matrix (output of
|
---|
| 32 | RMatrixLU subroutine).
|
---|
| 33 | Pivots - table of permutations which were made during
|
---|
| 34 | the LU decomposition.
|
---|
| 35 | Output of RMatrixLU subroutine.
|
---|
| 36 | N - size of matrix A.
|
---|
| 37 |
|
---|
| 38 | Result: matrix determinant.
|
---|
| 39 |
|
---|
| 40 | -- ALGLIB --
|
---|
| 41 | Copyright 2005 by Bochkanov Sergey
|
---|
| 42 | *************************************************************************/
|
---|
| 43 | public static AP.Complex cmatrixludet(ref AP.Complex[,] a,
|
---|
| 44 | ref int[] pivots,
|
---|
| 45 | int n)
|
---|
| 46 | {
|
---|
| 47 | AP.Complex result = 0;
|
---|
| 48 | int i = 0;
|
---|
| 49 | int s = 0;
|
---|
| 50 |
|
---|
| 51 | result = 1;
|
---|
| 52 | s = 1;
|
---|
| 53 | for(i=0; i<=n-1; i++)
|
---|
| 54 | {
|
---|
| 55 | result = result*a[i,i];
|
---|
| 56 | if( pivots[i]!=i )
|
---|
| 57 | {
|
---|
| 58 | s = -s;
|
---|
| 59 | }
|
---|
| 60 | }
|
---|
| 61 | result = result*s;
|
---|
| 62 | return result;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 |
|
---|
| 66 | /*************************************************************************
|
---|
| 67 | Calculation of the determinant of a general matrix
|
---|
| 68 |
|
---|
| 69 | Input parameters:
|
---|
| 70 | A - matrix, array[0..N-1, 0..N-1]
|
---|
| 71 | N - size of matrix A.
|
---|
| 72 |
|
---|
| 73 | Result: determinant of matrix A.
|
---|
| 74 |
|
---|
| 75 | -- ALGLIB --
|
---|
| 76 | Copyright 2005 by Bochkanov Sergey
|
---|
| 77 | *************************************************************************/
|
---|
| 78 | public static AP.Complex cmatrixdet(AP.Complex[,] a,
|
---|
| 79 | int n)
|
---|
| 80 | {
|
---|
| 81 | AP.Complex result = 0;
|
---|
| 82 | int[] pivots = new int[0];
|
---|
| 83 |
|
---|
| 84 | a = (AP.Complex[,])a.Clone();
|
---|
| 85 |
|
---|
| 86 | clu.cmatrixlu(ref a, n, n, ref pivots);
|
---|
| 87 | result = cmatrixludet(ref a, ref pivots, n);
|
---|
| 88 | return result;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 | public static AP.Complex complexdeterminantlu(ref AP.Complex[,] a,
|
---|
| 93 | ref int[] pivots,
|
---|
| 94 | int n)
|
---|
| 95 | {
|
---|
| 96 | AP.Complex result = 0;
|
---|
| 97 | int i = 0;
|
---|
| 98 | int s = 0;
|
---|
| 99 |
|
---|
| 100 | result = 1;
|
---|
| 101 | s = 1;
|
---|
| 102 | for(i=1; i<=n; i++)
|
---|
| 103 | {
|
---|
| 104 | result = result*a[i,i];
|
---|
| 105 | if( pivots[i]!=i )
|
---|
| 106 | {
|
---|
| 107 | s = -s;
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 | result = result*s;
|
---|
| 111 | return result;
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 |
|
---|
| 115 | public static AP.Complex complexdeterminant(AP.Complex[,] a,
|
---|
| 116 | int n)
|
---|
| 117 | {
|
---|
| 118 | AP.Complex result = 0;
|
---|
| 119 | int[] pivots = new int[0];
|
---|
| 120 |
|
---|
| 121 | a = (AP.Complex[,])a.Clone();
|
---|
| 122 |
|
---|
| 123 | clu.complexludecomposition(ref a, n, n, ref pivots);
|
---|
| 124 | result = complexdeterminantlu(ref a, ref pivots, n);
|
---|
| 125 | return result;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | }
|
---|