1 | /*************************************************************************
|
---|
2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
3 |
|
---|
4 | Contributors:
|
---|
5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
6 | pseudocode.
|
---|
7 |
|
---|
8 | See subroutines comments for additional copyrights.
|
---|
9 |
|
---|
10 | >>> SOURCE LICENSE >>>
|
---|
11 | This program is free software; you can redistribute it and/or modify
|
---|
12 | it under the terms of the GNU General Public License as published by
|
---|
13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
14 | License, or (at your option) any later version.
|
---|
15 |
|
---|
16 | This program is distributed in the hope that it will be useful,
|
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | GNU General Public License for more details.
|
---|
20 |
|
---|
21 | A copy of the GNU General Public License is available at
|
---|
22 | http://www.fsf.org/licensing/licenses
|
---|
23 |
|
---|
24 | >>> END OF LICENSE >>>
|
---|
25 | *************************************************************************/
|
---|
26 |
|
---|
27 | using System;
|
---|
28 |
|
---|
29 | namespace alglib
|
---|
30 | {
|
---|
31 | public class bidiagonal
|
---|
32 | {
|
---|
33 | /*************************************************************************
|
---|
34 | Reduction of a rectangular matrix to bidiagonal form
|
---|
35 |
|
---|
36 | The algorithm reduces the rectangular matrix A to bidiagonal form by
|
---|
37 | orthogonal transformations P and Q: A = Q*B*P.
|
---|
38 |
|
---|
39 | Input parameters:
|
---|
40 | A - source matrix. array[0..M-1, 0..N-1]
|
---|
41 | M - number of rows in matrix A.
|
---|
42 | N - number of columns in matrix A.
|
---|
43 |
|
---|
44 | Output parameters:
|
---|
45 | A - matrices Q, B, P in compact form (see below).
|
---|
46 | TauQ - scalar factors which are used to form matrix Q.
|
---|
47 | TauP - scalar factors which are used to form matrix P.
|
---|
48 |
|
---|
49 | The main diagonal and one of the secondary diagonals of matrix A are
|
---|
50 | replaced with bidiagonal matrix B. Other elements contain elementary
|
---|
51 | reflections which form MxM matrix Q and NxN matrix P, respectively.
|
---|
52 |
|
---|
53 | If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
|
---|
54 | corresponding elements of matrix A. Matrix Q is represented as a
|
---|
55 | product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
|
---|
56 | H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
|
---|
57 | vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
|
---|
58 | stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
|
---|
59 | G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
|
---|
60 | u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
|
---|
61 |
|
---|
62 | If M<N, B is the lower bidiagonal MxN matrix and is stored in the
|
---|
63 | corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
|
---|
64 | H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
|
---|
65 | is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
|
---|
66 | G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
|
---|
67 | is stored in A(i,i+1:n-1).
|
---|
68 |
|
---|
69 | EXAMPLE:
|
---|
70 |
|
---|
71 | m=6, n=5 (m > n): m=5, n=6 (m < n):
|
---|
72 |
|
---|
73 | ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
---|
74 | ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
---|
75 | ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
---|
76 | ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
---|
77 | ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
---|
78 | ( v1 v2 v3 v4 v5 )
|
---|
79 |
|
---|
80 | Here vi and ui are vectors which form H(i) and G(i), and d and e -
|
---|
81 | are the diagonal and off-diagonal elements of matrix B.
|
---|
82 | *************************************************************************/
|
---|
83 | public static void rmatrixbd(ref double[,] a,
|
---|
84 | int m,
|
---|
85 | int n,
|
---|
86 | ref double[] tauq,
|
---|
87 | ref double[] taup)
|
---|
88 | {
|
---|
89 | double[] work = new double[0];
|
---|
90 | double[] t = new double[0];
|
---|
91 | int minmn = 0;
|
---|
92 | int maxmn = 0;
|
---|
93 | int i = 0;
|
---|
94 | int j = 0;
|
---|
95 | double ltau = 0;
|
---|
96 | int i_ = 0;
|
---|
97 | int i1_ = 0;
|
---|
98 |
|
---|
99 |
|
---|
100 | //
|
---|
101 | // Prepare
|
---|
102 | //
|
---|
103 | if( n<=0 | m<=0 )
|
---|
104 | {
|
---|
105 | return;
|
---|
106 | }
|
---|
107 | minmn = Math.Min(m, n);
|
---|
108 | maxmn = Math.Max(m, n);
|
---|
109 | work = new double[maxmn+1];
|
---|
110 | t = new double[maxmn+1];
|
---|
111 | if( m>=n )
|
---|
112 | {
|
---|
113 | tauq = new double[n-1+1];
|
---|
114 | taup = new double[n-1+1];
|
---|
115 | }
|
---|
116 | else
|
---|
117 | {
|
---|
118 | tauq = new double[m-1+1];
|
---|
119 | taup = new double[m-1+1];
|
---|
120 | }
|
---|
121 | if( m>=n )
|
---|
122 | {
|
---|
123 |
|
---|
124 | //
|
---|
125 | // Reduce to upper bidiagonal form
|
---|
126 | //
|
---|
127 | for(i=0; i<=n-1; i++)
|
---|
128 | {
|
---|
129 |
|
---|
130 | //
|
---|
131 | // Generate elementary reflector H(i) to annihilate A(i+1:m-1,i)
|
---|
132 | //
|
---|
133 | i1_ = (i) - (1);
|
---|
134 | for(i_=1; i_<=m-i;i_++)
|
---|
135 | {
|
---|
136 | t[i_] = a[i_+i1_,i];
|
---|
137 | }
|
---|
138 | reflections.generatereflection(ref t, m-i, ref ltau);
|
---|
139 | tauq[i] = ltau;
|
---|
140 | i1_ = (1) - (i);
|
---|
141 | for(i_=i; i_<=m-1;i_++)
|
---|
142 | {
|
---|
143 | a[i_,i] = t[i_+i1_];
|
---|
144 | }
|
---|
145 | t[1] = 1;
|
---|
146 |
|
---|
147 | //
|
---|
148 | // Apply H(i) to A(i:m-1,i+1:n-1) from the left
|
---|
149 | //
|
---|
150 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m-1, i+1, n-1, ref work);
|
---|
151 | if( i<n-1 )
|
---|
152 | {
|
---|
153 |
|
---|
154 | //
|
---|
155 | // Generate elementary reflector G(i) to annihilate
|
---|
156 | // A(i,i+2:n-1)
|
---|
157 | //
|
---|
158 | i1_ = (i+1) - (1);
|
---|
159 | for(i_=1; i_<=n-i-1;i_++)
|
---|
160 | {
|
---|
161 | t[i_] = a[i,i_+i1_];
|
---|
162 | }
|
---|
163 | reflections.generatereflection(ref t, n-1-i, ref ltau);
|
---|
164 | taup[i] = ltau;
|
---|
165 | i1_ = (1) - (i+1);
|
---|
166 | for(i_=i+1; i_<=n-1;i_++)
|
---|
167 | {
|
---|
168 | a[i,i_] = t[i_+i1_];
|
---|
169 | }
|
---|
170 | t[1] = 1;
|
---|
171 |
|
---|
172 | //
|
---|
173 | // Apply G(i) to A(i+1:m-1,i+1:n-1) from the right
|
---|
174 | //
|
---|
175 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
176 | }
|
---|
177 | else
|
---|
178 | {
|
---|
179 | taup[i] = 0;
|
---|
180 | }
|
---|
181 | }
|
---|
182 | }
|
---|
183 | else
|
---|
184 | {
|
---|
185 |
|
---|
186 | //
|
---|
187 | // Reduce to lower bidiagonal form
|
---|
188 | //
|
---|
189 | for(i=0; i<=m-1; i++)
|
---|
190 | {
|
---|
191 |
|
---|
192 | //
|
---|
193 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n-1)
|
---|
194 | //
|
---|
195 | i1_ = (i) - (1);
|
---|
196 | for(i_=1; i_<=n-i;i_++)
|
---|
197 | {
|
---|
198 | t[i_] = a[i,i_+i1_];
|
---|
199 | }
|
---|
200 | reflections.generatereflection(ref t, n-i, ref ltau);
|
---|
201 | taup[i] = ltau;
|
---|
202 | i1_ = (1) - (i);
|
---|
203 | for(i_=i; i_<=n-1;i_++)
|
---|
204 | {
|
---|
205 | a[i,i_] = t[i_+i1_];
|
---|
206 | }
|
---|
207 | t[1] = 1;
|
---|
208 |
|
---|
209 | //
|
---|
210 | // Apply G(i) to A(i+1:m-1,i:n-1) from the right
|
---|
211 | //
|
---|
212 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i, n-1, ref work);
|
---|
213 | if( i<m-1 )
|
---|
214 | {
|
---|
215 |
|
---|
216 | //
|
---|
217 | // Generate elementary reflector H(i) to annihilate
|
---|
218 | // A(i+2:m-1,i)
|
---|
219 | //
|
---|
220 | i1_ = (i+1) - (1);
|
---|
221 | for(i_=1; i_<=m-1-i;i_++)
|
---|
222 | {
|
---|
223 | t[i_] = a[i_+i1_,i];
|
---|
224 | }
|
---|
225 | reflections.generatereflection(ref t, m-1-i, ref ltau);
|
---|
226 | tauq[i] = ltau;
|
---|
227 | i1_ = (1) - (i+1);
|
---|
228 | for(i_=i+1; i_<=m-1;i_++)
|
---|
229 | {
|
---|
230 | a[i_,i] = t[i_+i1_];
|
---|
231 | }
|
---|
232 | t[1] = 1;
|
---|
233 |
|
---|
234 | //
|
---|
235 | // Apply H(i) to A(i+1:m-1,i+1:n-1) from the left
|
---|
236 | //
|
---|
237 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
238 | }
|
---|
239 | else
|
---|
240 | {
|
---|
241 | tauq[i] = 0;
|
---|
242 | }
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 |
|
---|
248 | /*************************************************************************
|
---|
249 | Unpacking matrix Q which reduces a matrix to bidiagonal form.
|
---|
250 |
|
---|
251 | Input parameters:
|
---|
252 | QP - matrices Q and P in compact form.
|
---|
253 | Output of ToBidiagonal subroutine.
|
---|
254 | M - number of rows in matrix A.
|
---|
255 | N - number of columns in matrix A.
|
---|
256 | TAUQ - scalar factors which are used to form Q.
|
---|
257 | Output of ToBidiagonal subroutine.
|
---|
258 | QColumns - required number of columns in matrix Q.
|
---|
259 | M>=QColumns>=0.
|
---|
260 |
|
---|
261 | Output parameters:
|
---|
262 | Q - first QColumns columns of matrix Q.
|
---|
263 | Array[0..M-1, 0..QColumns-1]
|
---|
264 | If QColumns=0, the array is not modified.
|
---|
265 |
|
---|
266 | -- ALGLIB --
|
---|
267 | Copyright 2005 by Bochkanov Sergey
|
---|
268 | *************************************************************************/
|
---|
269 | public static void rmatrixbdunpackq(ref double[,] qp,
|
---|
270 | int m,
|
---|
271 | int n,
|
---|
272 | ref double[] tauq,
|
---|
273 | int qcolumns,
|
---|
274 | ref double[,] q)
|
---|
275 | {
|
---|
276 | int i = 0;
|
---|
277 | int j = 0;
|
---|
278 |
|
---|
279 | System.Diagnostics.Debug.Assert(qcolumns<=m, "RMatrixBDUnpackQ: QColumns>M!");
|
---|
280 | System.Diagnostics.Debug.Assert(qcolumns>=0, "RMatrixBDUnpackQ: QColumns<0!");
|
---|
281 | if( m==0 | n==0 | qcolumns==0 )
|
---|
282 | {
|
---|
283 | return;
|
---|
284 | }
|
---|
285 |
|
---|
286 | //
|
---|
287 | // prepare Q
|
---|
288 | //
|
---|
289 | q = new double[m-1+1, qcolumns-1+1];
|
---|
290 | for(i=0; i<=m-1; i++)
|
---|
291 | {
|
---|
292 | for(j=0; j<=qcolumns-1; j++)
|
---|
293 | {
|
---|
294 | if( i==j )
|
---|
295 | {
|
---|
296 | q[i,j] = 1;
|
---|
297 | }
|
---|
298 | else
|
---|
299 | {
|
---|
300 | q[i,j] = 0;
|
---|
301 | }
|
---|
302 | }
|
---|
303 | }
|
---|
304 |
|
---|
305 | //
|
---|
306 | // Calculate
|
---|
307 | //
|
---|
308 | rmatrixbdmultiplybyq(ref qp, m, n, ref tauq, ref q, m, qcolumns, false, false);
|
---|
309 | }
|
---|
310 |
|
---|
311 |
|
---|
312 | /*************************************************************************
|
---|
313 | Multiplication by matrix Q which reduces matrix A to bidiagonal form.
|
---|
314 |
|
---|
315 | The algorithm allows pre- or post-multiply by Q or Q'.
|
---|
316 |
|
---|
317 | Input parameters:
|
---|
318 | QP - matrices Q and P in compact form.
|
---|
319 | Output of ToBidiagonal subroutine.
|
---|
320 | M - number of rows in matrix A.
|
---|
321 | N - number of columns in matrix A.
|
---|
322 | TAUQ - scalar factors which are used to form Q.
|
---|
323 | Output of ToBidiagonal subroutine.
|
---|
324 | Z - multiplied matrix.
|
---|
325 | array[0..ZRows-1,0..ZColumns-1]
|
---|
326 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
327 | ZRows=M, otherwise ZRows can be arbitrary.
|
---|
328 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
329 | ZColumns=M, otherwise ZColumns can be arbitrary.
|
---|
330 | FromTheRight - pre- or post-multiply.
|
---|
331 | DoTranspose - multiply by Q or Q'.
|
---|
332 |
|
---|
333 | Output parameters:
|
---|
334 | Z - product of Z and Q.
|
---|
335 | Array[0..ZRows-1,0..ZColumns-1]
|
---|
336 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
337 |
|
---|
338 | -- ALGLIB --
|
---|
339 | Copyright 2005 by Bochkanov Sergey
|
---|
340 | *************************************************************************/
|
---|
341 | public static void rmatrixbdmultiplybyq(ref double[,] qp,
|
---|
342 | int m,
|
---|
343 | int n,
|
---|
344 | ref double[] tauq,
|
---|
345 | ref double[,] z,
|
---|
346 | int zrows,
|
---|
347 | int zcolumns,
|
---|
348 | bool fromtheright,
|
---|
349 | bool dotranspose)
|
---|
350 | {
|
---|
351 | int i = 0;
|
---|
352 | int i1 = 0;
|
---|
353 | int i2 = 0;
|
---|
354 | int istep = 0;
|
---|
355 | double[] v = new double[0];
|
---|
356 | double[] work = new double[0];
|
---|
357 | int mx = 0;
|
---|
358 | int i_ = 0;
|
---|
359 | int i1_ = 0;
|
---|
360 |
|
---|
361 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
362 | {
|
---|
363 | return;
|
---|
364 | }
|
---|
365 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "RMatrixBDMultiplyByQ: incorrect Z size!");
|
---|
366 |
|
---|
367 | //
|
---|
368 | // init
|
---|
369 | //
|
---|
370 | mx = Math.Max(m, n);
|
---|
371 | mx = Math.Max(mx, zrows);
|
---|
372 | mx = Math.Max(mx, zcolumns);
|
---|
373 | v = new double[mx+1];
|
---|
374 | work = new double[mx+1];
|
---|
375 | if( m>=n )
|
---|
376 | {
|
---|
377 |
|
---|
378 | //
|
---|
379 | // setup
|
---|
380 | //
|
---|
381 | if( fromtheright )
|
---|
382 | {
|
---|
383 | i1 = 0;
|
---|
384 | i2 = n-1;
|
---|
385 | istep = +1;
|
---|
386 | }
|
---|
387 | else
|
---|
388 | {
|
---|
389 | i1 = n-1;
|
---|
390 | i2 = 0;
|
---|
391 | istep = -1;
|
---|
392 | }
|
---|
393 | if( dotranspose )
|
---|
394 | {
|
---|
395 | i = i1;
|
---|
396 | i1 = i2;
|
---|
397 | i2 = i;
|
---|
398 | istep = -istep;
|
---|
399 | }
|
---|
400 |
|
---|
401 | //
|
---|
402 | // Process
|
---|
403 | //
|
---|
404 | i = i1;
|
---|
405 | do
|
---|
406 | {
|
---|
407 | i1_ = (i) - (1);
|
---|
408 | for(i_=1; i_<=m-i;i_++)
|
---|
409 | {
|
---|
410 | v[i_] = qp[i_+i1_,i];
|
---|
411 | }
|
---|
412 | v[1] = 1;
|
---|
413 | if( fromtheright )
|
---|
414 | {
|
---|
415 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i, m-1, ref work);
|
---|
416 | }
|
---|
417 | else
|
---|
418 | {
|
---|
419 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m-1, 0, zcolumns-1, ref work);
|
---|
420 | }
|
---|
421 | i = i+istep;
|
---|
422 | }
|
---|
423 | while( i!=i2+istep );
|
---|
424 | }
|
---|
425 | else
|
---|
426 | {
|
---|
427 |
|
---|
428 | //
|
---|
429 | // setup
|
---|
430 | //
|
---|
431 | if( fromtheright )
|
---|
432 | {
|
---|
433 | i1 = 0;
|
---|
434 | i2 = m-2;
|
---|
435 | istep = +1;
|
---|
436 | }
|
---|
437 | else
|
---|
438 | {
|
---|
439 | i1 = m-2;
|
---|
440 | i2 = 0;
|
---|
441 | istep = -1;
|
---|
442 | }
|
---|
443 | if( dotranspose )
|
---|
444 | {
|
---|
445 | i = i1;
|
---|
446 | i1 = i2;
|
---|
447 | i2 = i;
|
---|
448 | istep = -istep;
|
---|
449 | }
|
---|
450 |
|
---|
451 | //
|
---|
452 | // Process
|
---|
453 | //
|
---|
454 | if( m-1>0 )
|
---|
455 | {
|
---|
456 | i = i1;
|
---|
457 | do
|
---|
458 | {
|
---|
459 | i1_ = (i+1) - (1);
|
---|
460 | for(i_=1; i_<=m-i-1;i_++)
|
---|
461 | {
|
---|
462 | v[i_] = qp[i_+i1_,i];
|
---|
463 | }
|
---|
464 | v[1] = 1;
|
---|
465 | if( fromtheright )
|
---|
466 | {
|
---|
467 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i+1, m-1, ref work);
|
---|
468 | }
|
---|
469 | else
|
---|
470 | {
|
---|
471 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m-1, 0, zcolumns-1, ref work);
|
---|
472 | }
|
---|
473 | i = i+istep;
|
---|
474 | }
|
---|
475 | while( i!=i2+istep );
|
---|
476 | }
|
---|
477 | }
|
---|
478 | }
|
---|
479 |
|
---|
480 |
|
---|
481 | /*************************************************************************
|
---|
482 | Unpacking matrix P which reduces matrix A to bidiagonal form.
|
---|
483 | The subroutine returns transposed matrix P.
|
---|
484 |
|
---|
485 | Input parameters:
|
---|
486 | QP - matrices Q and P in compact form.
|
---|
487 | Output of ToBidiagonal subroutine.
|
---|
488 | M - number of rows in matrix A.
|
---|
489 | N - number of columns in matrix A.
|
---|
490 | TAUP - scalar factors which are used to form P.
|
---|
491 | Output of ToBidiagonal subroutine.
|
---|
492 | PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
|
---|
493 |
|
---|
494 | Output parameters:
|
---|
495 | PT - first PTRows columns of matrix P^T
|
---|
496 | Array[0..PTRows-1, 0..N-1]
|
---|
497 | If PTRows=0, the array is not modified.
|
---|
498 |
|
---|
499 | -- ALGLIB --
|
---|
500 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
501 | *************************************************************************/
|
---|
502 | public static void rmatrixbdunpackpt(ref double[,] qp,
|
---|
503 | int m,
|
---|
504 | int n,
|
---|
505 | ref double[] taup,
|
---|
506 | int ptrows,
|
---|
507 | ref double[,] pt)
|
---|
508 | {
|
---|
509 | int i = 0;
|
---|
510 | int j = 0;
|
---|
511 |
|
---|
512 | System.Diagnostics.Debug.Assert(ptrows<=n, "RMatrixBDUnpackPT: PTRows>N!");
|
---|
513 | System.Diagnostics.Debug.Assert(ptrows>=0, "RMatrixBDUnpackPT: PTRows<0!");
|
---|
514 | if( m==0 | n==0 | ptrows==0 )
|
---|
515 | {
|
---|
516 | return;
|
---|
517 | }
|
---|
518 |
|
---|
519 | //
|
---|
520 | // prepare PT
|
---|
521 | //
|
---|
522 | pt = new double[ptrows-1+1, n-1+1];
|
---|
523 | for(i=0; i<=ptrows-1; i++)
|
---|
524 | {
|
---|
525 | for(j=0; j<=n-1; j++)
|
---|
526 | {
|
---|
527 | if( i==j )
|
---|
528 | {
|
---|
529 | pt[i,j] = 1;
|
---|
530 | }
|
---|
531 | else
|
---|
532 | {
|
---|
533 | pt[i,j] = 0;
|
---|
534 | }
|
---|
535 | }
|
---|
536 | }
|
---|
537 |
|
---|
538 | //
|
---|
539 | // Calculate
|
---|
540 | //
|
---|
541 | rmatrixbdmultiplybyp(ref qp, m, n, ref taup, ref pt, ptrows, n, true, true);
|
---|
542 | }
|
---|
543 |
|
---|
544 |
|
---|
545 | /*************************************************************************
|
---|
546 | Multiplication by matrix P which reduces matrix A to bidiagonal form.
|
---|
547 |
|
---|
548 | The algorithm allows pre- or post-multiply by P or P'.
|
---|
549 |
|
---|
550 | Input parameters:
|
---|
551 | QP - matrices Q and P in compact form.
|
---|
552 | Output of RMatrixBD subroutine.
|
---|
553 | M - number of rows in matrix A.
|
---|
554 | N - number of columns in matrix A.
|
---|
555 | TAUP - scalar factors which are used to form P.
|
---|
556 | Output of RMatrixBD subroutine.
|
---|
557 | Z - multiplied matrix.
|
---|
558 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
559 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
560 | ZRows=N, otherwise ZRows can be arbitrary.
|
---|
561 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
562 | ZColumns=N, otherwise ZColumns can be arbitrary.
|
---|
563 | FromTheRight - pre- or post-multiply.
|
---|
564 | DoTranspose - multiply by P or P'.
|
---|
565 |
|
---|
566 | Output parameters:
|
---|
567 | Z - product of Z and P.
|
---|
568 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
569 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
570 |
|
---|
571 | -- ALGLIB --
|
---|
572 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
573 | *************************************************************************/
|
---|
574 | public static void rmatrixbdmultiplybyp(ref double[,] qp,
|
---|
575 | int m,
|
---|
576 | int n,
|
---|
577 | ref double[] taup,
|
---|
578 | ref double[,] z,
|
---|
579 | int zrows,
|
---|
580 | int zcolumns,
|
---|
581 | bool fromtheright,
|
---|
582 | bool dotranspose)
|
---|
583 | {
|
---|
584 | int i = 0;
|
---|
585 | double[] v = new double[0];
|
---|
586 | double[] work = new double[0];
|
---|
587 | int mx = 0;
|
---|
588 | int i1 = 0;
|
---|
589 | int i2 = 0;
|
---|
590 | int istep = 0;
|
---|
591 | int i_ = 0;
|
---|
592 | int i1_ = 0;
|
---|
593 |
|
---|
594 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
595 | {
|
---|
596 | return;
|
---|
597 | }
|
---|
598 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "RMatrixBDMultiplyByP: incorrect Z size!");
|
---|
599 |
|
---|
600 | //
|
---|
601 | // init
|
---|
602 | //
|
---|
603 | mx = Math.Max(m, n);
|
---|
604 | mx = Math.Max(mx, zrows);
|
---|
605 | mx = Math.Max(mx, zcolumns);
|
---|
606 | v = new double[mx+1];
|
---|
607 | work = new double[mx+1];
|
---|
608 | v = new double[mx+1];
|
---|
609 | work = new double[mx+1];
|
---|
610 | if( m>=n )
|
---|
611 | {
|
---|
612 |
|
---|
613 | //
|
---|
614 | // setup
|
---|
615 | //
|
---|
616 | if( fromtheright )
|
---|
617 | {
|
---|
618 | i1 = n-2;
|
---|
619 | i2 = 0;
|
---|
620 | istep = -1;
|
---|
621 | }
|
---|
622 | else
|
---|
623 | {
|
---|
624 | i1 = 0;
|
---|
625 | i2 = n-2;
|
---|
626 | istep = +1;
|
---|
627 | }
|
---|
628 | if( !dotranspose )
|
---|
629 | {
|
---|
630 | i = i1;
|
---|
631 | i1 = i2;
|
---|
632 | i2 = i;
|
---|
633 | istep = -istep;
|
---|
634 | }
|
---|
635 |
|
---|
636 | //
|
---|
637 | // Process
|
---|
638 | //
|
---|
639 | if( n-1>0 )
|
---|
640 | {
|
---|
641 | i = i1;
|
---|
642 | do
|
---|
643 | {
|
---|
644 | i1_ = (i+1) - (1);
|
---|
645 | for(i_=1; i_<=n-1-i;i_++)
|
---|
646 | {
|
---|
647 | v[i_] = qp[i,i_+i1_];
|
---|
648 | }
|
---|
649 | v[1] = 1;
|
---|
650 | if( fromtheright )
|
---|
651 | {
|
---|
652 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i+1, n-1, ref work);
|
---|
653 | }
|
---|
654 | else
|
---|
655 | {
|
---|
656 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n-1, 0, zcolumns-1, ref work);
|
---|
657 | }
|
---|
658 | i = i+istep;
|
---|
659 | }
|
---|
660 | while( i!=i2+istep );
|
---|
661 | }
|
---|
662 | }
|
---|
663 | else
|
---|
664 | {
|
---|
665 |
|
---|
666 | //
|
---|
667 | // setup
|
---|
668 | //
|
---|
669 | if( fromtheright )
|
---|
670 | {
|
---|
671 | i1 = m-1;
|
---|
672 | i2 = 0;
|
---|
673 | istep = -1;
|
---|
674 | }
|
---|
675 | else
|
---|
676 | {
|
---|
677 | i1 = 0;
|
---|
678 | i2 = m-1;
|
---|
679 | istep = +1;
|
---|
680 | }
|
---|
681 | if( !dotranspose )
|
---|
682 | {
|
---|
683 | i = i1;
|
---|
684 | i1 = i2;
|
---|
685 | i2 = i;
|
---|
686 | istep = -istep;
|
---|
687 | }
|
---|
688 |
|
---|
689 | //
|
---|
690 | // Process
|
---|
691 | //
|
---|
692 | i = i1;
|
---|
693 | do
|
---|
694 | {
|
---|
695 | i1_ = (i) - (1);
|
---|
696 | for(i_=1; i_<=n-i;i_++)
|
---|
697 | {
|
---|
698 | v[i_] = qp[i,i_+i1_];
|
---|
699 | }
|
---|
700 | v[1] = 1;
|
---|
701 | if( fromtheright )
|
---|
702 | {
|
---|
703 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i, n-1, ref work);
|
---|
704 | }
|
---|
705 | else
|
---|
706 | {
|
---|
707 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n-1, 0, zcolumns-1, ref work);
|
---|
708 | }
|
---|
709 | i = i+istep;
|
---|
710 | }
|
---|
711 | while( i!=i2+istep );
|
---|
712 | }
|
---|
713 | }
|
---|
714 |
|
---|
715 |
|
---|
716 | /*************************************************************************
|
---|
717 | Unpacking of the main and secondary diagonals of bidiagonal decomposition
|
---|
718 | of matrix A.
|
---|
719 |
|
---|
720 | Input parameters:
|
---|
721 | B - output of RMatrixBD subroutine.
|
---|
722 | M - number of rows in matrix B.
|
---|
723 | N - number of columns in matrix B.
|
---|
724 |
|
---|
725 | Output parameters:
|
---|
726 | IsUpper - True, if the matrix is upper bidiagonal.
|
---|
727 | otherwise IsUpper is False.
|
---|
728 | D - the main diagonal.
|
---|
729 | Array whose index ranges within [0..Min(M,N)-1].
|
---|
730 | E - the secondary diagonal (upper or lower, depending on
|
---|
731 | the value of IsUpper).
|
---|
732 | Array index ranges within [0..Min(M,N)-1], the last
|
---|
733 | element is not used.
|
---|
734 |
|
---|
735 | -- ALGLIB --
|
---|
736 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
737 | *************************************************************************/
|
---|
738 | public static void rmatrixbdunpackdiagonals(ref double[,] b,
|
---|
739 | int m,
|
---|
740 | int n,
|
---|
741 | ref bool isupper,
|
---|
742 | ref double[] d,
|
---|
743 | ref double[] e)
|
---|
744 | {
|
---|
745 | int i = 0;
|
---|
746 |
|
---|
747 | isupper = m>=n;
|
---|
748 | if( m<=0 | n<=0 )
|
---|
749 | {
|
---|
750 | return;
|
---|
751 | }
|
---|
752 | if( isupper )
|
---|
753 | {
|
---|
754 | d = new double[n-1+1];
|
---|
755 | e = new double[n-1+1];
|
---|
756 | for(i=0; i<=n-2; i++)
|
---|
757 | {
|
---|
758 | d[i] = b[i,i];
|
---|
759 | e[i] = b[i,i+1];
|
---|
760 | }
|
---|
761 | d[n-1] = b[n-1,n-1];
|
---|
762 | }
|
---|
763 | else
|
---|
764 | {
|
---|
765 | d = new double[m-1+1];
|
---|
766 | e = new double[m-1+1];
|
---|
767 | for(i=0; i<=m-2; i++)
|
---|
768 | {
|
---|
769 | d[i] = b[i,i];
|
---|
770 | e[i] = b[i+1,i];
|
---|
771 | }
|
---|
772 | d[m-1] = b[m-1,m-1];
|
---|
773 | }
|
---|
774 | }
|
---|
775 |
|
---|
776 |
|
---|
777 | /*************************************************************************
|
---|
778 | Obsolete 1-based subroutine.
|
---|
779 | See RMatrixBD for 0-based replacement.
|
---|
780 | *************************************************************************/
|
---|
781 | public static void tobidiagonal(ref double[,] a,
|
---|
782 | int m,
|
---|
783 | int n,
|
---|
784 | ref double[] tauq,
|
---|
785 | ref double[] taup)
|
---|
786 | {
|
---|
787 | double[] work = new double[0];
|
---|
788 | double[] t = new double[0];
|
---|
789 | int minmn = 0;
|
---|
790 | int maxmn = 0;
|
---|
791 | int i = 0;
|
---|
792 | double ltau = 0;
|
---|
793 | int mmip1 = 0;
|
---|
794 | int nmi = 0;
|
---|
795 | int ip1 = 0;
|
---|
796 | int nmip1 = 0;
|
---|
797 | int mmi = 0;
|
---|
798 | int i_ = 0;
|
---|
799 | int i1_ = 0;
|
---|
800 |
|
---|
801 | minmn = Math.Min(m, n);
|
---|
802 | maxmn = Math.Max(m, n);
|
---|
803 | work = new double[maxmn+1];
|
---|
804 | t = new double[maxmn+1];
|
---|
805 | taup = new double[minmn+1];
|
---|
806 | tauq = new double[minmn+1];
|
---|
807 | if( m>=n )
|
---|
808 | {
|
---|
809 |
|
---|
810 | //
|
---|
811 | // Reduce to upper bidiagonal form
|
---|
812 | //
|
---|
813 | for(i=1; i<=n; i++)
|
---|
814 | {
|
---|
815 |
|
---|
816 | //
|
---|
817 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
818 | //
|
---|
819 | mmip1 = m-i+1;
|
---|
820 | i1_ = (i) - (1);
|
---|
821 | for(i_=1; i_<=mmip1;i_++)
|
---|
822 | {
|
---|
823 | t[i_] = a[i_+i1_,i];
|
---|
824 | }
|
---|
825 | reflections.generatereflection(ref t, mmip1, ref ltau);
|
---|
826 | tauq[i] = ltau;
|
---|
827 | i1_ = (1) - (i);
|
---|
828 | for(i_=i; i_<=m;i_++)
|
---|
829 | {
|
---|
830 | a[i_,i] = t[i_+i1_];
|
---|
831 | }
|
---|
832 | t[1] = 1;
|
---|
833 |
|
---|
834 | //
|
---|
835 | // Apply H(i) to A(i:m,i+1:n) from the left
|
---|
836 | //
|
---|
837 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m, i+1, n, ref work);
|
---|
838 | if( i<n )
|
---|
839 | {
|
---|
840 |
|
---|
841 | //
|
---|
842 | // Generate elementary reflector G(i) to annihilate
|
---|
843 | // A(i,i+2:n)
|
---|
844 | //
|
---|
845 | nmi = n-i;
|
---|
846 | ip1 = i+1;
|
---|
847 | i1_ = (ip1) - (1);
|
---|
848 | for(i_=1; i_<=nmi;i_++)
|
---|
849 | {
|
---|
850 | t[i_] = a[i,i_+i1_];
|
---|
851 | }
|
---|
852 | reflections.generatereflection(ref t, nmi, ref ltau);
|
---|
853 | taup[i] = ltau;
|
---|
854 | i1_ = (1) - (ip1);
|
---|
855 | for(i_=ip1; i_<=n;i_++)
|
---|
856 | {
|
---|
857 | a[i,i_] = t[i_+i1_];
|
---|
858 | }
|
---|
859 | t[1] = 1;
|
---|
860 |
|
---|
861 | //
|
---|
862 | // Apply G(i) to A(i+1:m,i+1:n) from the right
|
---|
863 | //
|
---|
864 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
865 | }
|
---|
866 | else
|
---|
867 | {
|
---|
868 | taup[i] = 0;
|
---|
869 | }
|
---|
870 | }
|
---|
871 | }
|
---|
872 | else
|
---|
873 | {
|
---|
874 |
|
---|
875 | //
|
---|
876 | // Reduce to lower bidiagonal form
|
---|
877 | //
|
---|
878 | for(i=1; i<=m; i++)
|
---|
879 | {
|
---|
880 |
|
---|
881 | //
|
---|
882 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n)
|
---|
883 | //
|
---|
884 | nmip1 = n-i+1;
|
---|
885 | i1_ = (i) - (1);
|
---|
886 | for(i_=1; i_<=nmip1;i_++)
|
---|
887 | {
|
---|
888 | t[i_] = a[i,i_+i1_];
|
---|
889 | }
|
---|
890 | reflections.generatereflection(ref t, nmip1, ref ltau);
|
---|
891 | taup[i] = ltau;
|
---|
892 | i1_ = (1) - (i);
|
---|
893 | for(i_=i; i_<=n;i_++)
|
---|
894 | {
|
---|
895 | a[i,i_] = t[i_+i1_];
|
---|
896 | }
|
---|
897 | t[1] = 1;
|
---|
898 |
|
---|
899 | //
|
---|
900 | // Apply G(i) to A(i+1:m,i:n) from the right
|
---|
901 | //
|
---|
902 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i, n, ref work);
|
---|
903 | if( i<m )
|
---|
904 | {
|
---|
905 |
|
---|
906 | //
|
---|
907 | // Generate elementary reflector H(i) to annihilate
|
---|
908 | // A(i+2:m,i)
|
---|
909 | //
|
---|
910 | mmi = m-i;
|
---|
911 | ip1 = i+1;
|
---|
912 | i1_ = (ip1) - (1);
|
---|
913 | for(i_=1; i_<=mmi;i_++)
|
---|
914 | {
|
---|
915 | t[i_] = a[i_+i1_,i];
|
---|
916 | }
|
---|
917 | reflections.generatereflection(ref t, mmi, ref ltau);
|
---|
918 | tauq[i] = ltau;
|
---|
919 | i1_ = (1) - (ip1);
|
---|
920 | for(i_=ip1; i_<=m;i_++)
|
---|
921 | {
|
---|
922 | a[i_,i] = t[i_+i1_];
|
---|
923 | }
|
---|
924 | t[1] = 1;
|
---|
925 |
|
---|
926 | //
|
---|
927 | // Apply H(i) to A(i+1:m,i+1:n) from the left
|
---|
928 | //
|
---|
929 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
930 | }
|
---|
931 | else
|
---|
932 | {
|
---|
933 | tauq[i] = 0;
|
---|
934 | }
|
---|
935 | }
|
---|
936 | }
|
---|
937 | }
|
---|
938 |
|
---|
939 |
|
---|
940 | /*************************************************************************
|
---|
941 | Obsolete 1-based subroutine.
|
---|
942 | See RMatrixBDUnpackQ for 0-based replacement.
|
---|
943 | *************************************************************************/
|
---|
944 | public static void unpackqfrombidiagonal(ref double[,] qp,
|
---|
945 | int m,
|
---|
946 | int n,
|
---|
947 | ref double[] tauq,
|
---|
948 | int qcolumns,
|
---|
949 | ref double[,] q)
|
---|
950 | {
|
---|
951 | int i = 0;
|
---|
952 | int j = 0;
|
---|
953 | int ip1 = 0;
|
---|
954 | double[] v = new double[0];
|
---|
955 | double[] work = new double[0];
|
---|
956 | int vm = 0;
|
---|
957 | int i_ = 0;
|
---|
958 | int i1_ = 0;
|
---|
959 |
|
---|
960 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromBidiagonal: QColumns>M!");
|
---|
961 | if( m==0 | n==0 | qcolumns==0 )
|
---|
962 | {
|
---|
963 | return;
|
---|
964 | }
|
---|
965 |
|
---|
966 | //
|
---|
967 | // init
|
---|
968 | //
|
---|
969 | q = new double[m+1, qcolumns+1];
|
---|
970 | v = new double[m+1];
|
---|
971 | work = new double[qcolumns+1];
|
---|
972 |
|
---|
973 | //
|
---|
974 | // prepare Q
|
---|
975 | //
|
---|
976 | for(i=1; i<=m; i++)
|
---|
977 | {
|
---|
978 | for(j=1; j<=qcolumns; j++)
|
---|
979 | {
|
---|
980 | if( i==j )
|
---|
981 | {
|
---|
982 | q[i,j] = 1;
|
---|
983 | }
|
---|
984 | else
|
---|
985 | {
|
---|
986 | q[i,j] = 0;
|
---|
987 | }
|
---|
988 | }
|
---|
989 | }
|
---|
990 | if( m>=n )
|
---|
991 | {
|
---|
992 | for(i=Math.Min(n, qcolumns); i>=1; i--)
|
---|
993 | {
|
---|
994 | vm = m-i+1;
|
---|
995 | i1_ = (i) - (1);
|
---|
996 | for(i_=1; i_<=vm;i_++)
|
---|
997 | {
|
---|
998 | v[i_] = qp[i_+i1_,i];
|
---|
999 | }
|
---|
1000 | v[1] = 1;
|
---|
1001 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i, m, 1, qcolumns, ref work);
|
---|
1002 | }
|
---|
1003 | }
|
---|
1004 | else
|
---|
1005 | {
|
---|
1006 | for(i=Math.Min(m-1, qcolumns-1); i>=1; i--)
|
---|
1007 | {
|
---|
1008 | vm = m-i;
|
---|
1009 | ip1 = i+1;
|
---|
1010 | i1_ = (ip1) - (1);
|
---|
1011 | for(i_=1; i_<=vm;i_++)
|
---|
1012 | {
|
---|
1013 | v[i_] = qp[i_+i1_,i];
|
---|
1014 | }
|
---|
1015 | v[1] = 1;
|
---|
1016 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i+1, m, 1, qcolumns, ref work);
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /*************************************************************************
|
---|
1023 | Obsolete 1-based subroutine.
|
---|
1024 | See RMatrixBDMultiplyByQ for 0-based replacement.
|
---|
1025 | *************************************************************************/
|
---|
1026 | public static void multiplybyqfrombidiagonal(ref double[,] qp,
|
---|
1027 | int m,
|
---|
1028 | int n,
|
---|
1029 | ref double[] tauq,
|
---|
1030 | ref double[,] z,
|
---|
1031 | int zrows,
|
---|
1032 | int zcolumns,
|
---|
1033 | bool fromtheright,
|
---|
1034 | bool dotranspose)
|
---|
1035 | {
|
---|
1036 | int i = 0;
|
---|
1037 | int ip1 = 0;
|
---|
1038 | int i1 = 0;
|
---|
1039 | int i2 = 0;
|
---|
1040 | int istep = 0;
|
---|
1041 | double[] v = new double[0];
|
---|
1042 | double[] work = new double[0];
|
---|
1043 | int vm = 0;
|
---|
1044 | int mx = 0;
|
---|
1045 | int i_ = 0;
|
---|
1046 | int i1_ = 0;
|
---|
1047 |
|
---|
1048 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
1049 | {
|
---|
1050 | return;
|
---|
1051 | }
|
---|
1052 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
1053 |
|
---|
1054 | //
|
---|
1055 | // init
|
---|
1056 | //
|
---|
1057 | mx = Math.Max(m, n);
|
---|
1058 | mx = Math.Max(mx, zrows);
|
---|
1059 | mx = Math.Max(mx, zcolumns);
|
---|
1060 | v = new double[mx+1];
|
---|
1061 | work = new double[mx+1];
|
---|
1062 | if( m>=n )
|
---|
1063 | {
|
---|
1064 |
|
---|
1065 | //
|
---|
1066 | // setup
|
---|
1067 | //
|
---|
1068 | if( fromtheright )
|
---|
1069 | {
|
---|
1070 | i1 = 1;
|
---|
1071 | i2 = n;
|
---|
1072 | istep = +1;
|
---|
1073 | }
|
---|
1074 | else
|
---|
1075 | {
|
---|
1076 | i1 = n;
|
---|
1077 | i2 = 1;
|
---|
1078 | istep = -1;
|
---|
1079 | }
|
---|
1080 | if( dotranspose )
|
---|
1081 | {
|
---|
1082 | i = i1;
|
---|
1083 | i1 = i2;
|
---|
1084 | i2 = i;
|
---|
1085 | istep = -istep;
|
---|
1086 | }
|
---|
1087 |
|
---|
1088 | //
|
---|
1089 | // Process
|
---|
1090 | //
|
---|
1091 | i = i1;
|
---|
1092 | do
|
---|
1093 | {
|
---|
1094 | vm = m-i+1;
|
---|
1095 | i1_ = (i) - (1);
|
---|
1096 | for(i_=1; i_<=vm;i_++)
|
---|
1097 | {
|
---|
1098 | v[i_] = qp[i_+i1_,i];
|
---|
1099 | }
|
---|
1100 | v[1] = 1;
|
---|
1101 | if( fromtheright )
|
---|
1102 | {
|
---|
1103 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i, m, ref work);
|
---|
1104 | }
|
---|
1105 | else
|
---|
1106 | {
|
---|
1107 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m, 1, zcolumns, ref work);
|
---|
1108 | }
|
---|
1109 | i = i+istep;
|
---|
1110 | }
|
---|
1111 | while( i!=i2+istep );
|
---|
1112 | }
|
---|
1113 | else
|
---|
1114 | {
|
---|
1115 |
|
---|
1116 | //
|
---|
1117 | // setup
|
---|
1118 | //
|
---|
1119 | if( fromtheright )
|
---|
1120 | {
|
---|
1121 | i1 = 1;
|
---|
1122 | i2 = m-1;
|
---|
1123 | istep = +1;
|
---|
1124 | }
|
---|
1125 | else
|
---|
1126 | {
|
---|
1127 | i1 = m-1;
|
---|
1128 | i2 = 1;
|
---|
1129 | istep = -1;
|
---|
1130 | }
|
---|
1131 | if( dotranspose )
|
---|
1132 | {
|
---|
1133 | i = i1;
|
---|
1134 | i1 = i2;
|
---|
1135 | i2 = i;
|
---|
1136 | istep = -istep;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | //
|
---|
1140 | // Process
|
---|
1141 | //
|
---|
1142 | if( m-1>0 )
|
---|
1143 | {
|
---|
1144 | i = i1;
|
---|
1145 | do
|
---|
1146 | {
|
---|
1147 | vm = m-i;
|
---|
1148 | ip1 = i+1;
|
---|
1149 | i1_ = (ip1) - (1);
|
---|
1150 | for(i_=1; i_<=vm;i_++)
|
---|
1151 | {
|
---|
1152 | v[i_] = qp[i_+i1_,i];
|
---|
1153 | }
|
---|
1154 | v[1] = 1;
|
---|
1155 | if( fromtheright )
|
---|
1156 | {
|
---|
1157 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i+1, m, ref work);
|
---|
1158 | }
|
---|
1159 | else
|
---|
1160 | {
|
---|
1161 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m, 1, zcolumns, ref work);
|
---|
1162 | }
|
---|
1163 | i = i+istep;
|
---|
1164 | }
|
---|
1165 | while( i!=i2+istep );
|
---|
1166 | }
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 |
|
---|
1171 | /*************************************************************************
|
---|
1172 | Obsolete 1-based subroutine.
|
---|
1173 | See RMatrixBDUnpackPT for 0-based replacement.
|
---|
1174 | *************************************************************************/
|
---|
1175 | public static void unpackptfrombidiagonal(ref double[,] qp,
|
---|
1176 | int m,
|
---|
1177 | int n,
|
---|
1178 | ref double[] taup,
|
---|
1179 | int ptrows,
|
---|
1180 | ref double[,] pt)
|
---|
1181 | {
|
---|
1182 | int i = 0;
|
---|
1183 | int j = 0;
|
---|
1184 | int ip1 = 0;
|
---|
1185 | double[] v = new double[0];
|
---|
1186 | double[] work = new double[0];
|
---|
1187 | int vm = 0;
|
---|
1188 | int i_ = 0;
|
---|
1189 | int i1_ = 0;
|
---|
1190 |
|
---|
1191 | System.Diagnostics.Debug.Assert(ptrows<=n, "UnpackPTFromBidiagonal: PTRows>N!");
|
---|
1192 | if( m==0 | n==0 | ptrows==0 )
|
---|
1193 | {
|
---|
1194 | return;
|
---|
1195 | }
|
---|
1196 |
|
---|
1197 | //
|
---|
1198 | // init
|
---|
1199 | //
|
---|
1200 | pt = new double[ptrows+1, n+1];
|
---|
1201 | v = new double[n+1];
|
---|
1202 | work = new double[ptrows+1];
|
---|
1203 |
|
---|
1204 | //
|
---|
1205 | // prepare PT
|
---|
1206 | //
|
---|
1207 | for(i=1; i<=ptrows; i++)
|
---|
1208 | {
|
---|
1209 | for(j=1; j<=n; j++)
|
---|
1210 | {
|
---|
1211 | if( i==j )
|
---|
1212 | {
|
---|
1213 | pt[i,j] = 1;
|
---|
1214 | }
|
---|
1215 | else
|
---|
1216 | {
|
---|
1217 | pt[i,j] = 0;
|
---|
1218 | }
|
---|
1219 | }
|
---|
1220 | }
|
---|
1221 | if( m>=n )
|
---|
1222 | {
|
---|
1223 | for(i=Math.Min(n-1, ptrows-1); i>=1; i--)
|
---|
1224 | {
|
---|
1225 | vm = n-i;
|
---|
1226 | ip1 = i+1;
|
---|
1227 | i1_ = (ip1) - (1);
|
---|
1228 | for(i_=1; i_<=vm;i_++)
|
---|
1229 | {
|
---|
1230 | v[i_] = qp[i,i_+i1_];
|
---|
1231 | }
|
---|
1232 | v[1] = 1;
|
---|
1233 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i+1, n, ref work);
|
---|
1234 | }
|
---|
1235 | }
|
---|
1236 | else
|
---|
1237 | {
|
---|
1238 | for(i=Math.Min(m, ptrows); i>=1; i--)
|
---|
1239 | {
|
---|
1240 | vm = n-i+1;
|
---|
1241 | i1_ = (i) - (1);
|
---|
1242 | for(i_=1; i_<=vm;i_++)
|
---|
1243 | {
|
---|
1244 | v[i_] = qp[i,i_+i1_];
|
---|
1245 | }
|
---|
1246 | v[1] = 1;
|
---|
1247 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i, n, ref work);
|
---|
1248 | }
|
---|
1249 | }
|
---|
1250 | }
|
---|
1251 |
|
---|
1252 |
|
---|
1253 | /*************************************************************************
|
---|
1254 | Obsolete 1-based subroutine.
|
---|
1255 | See RMatrixBDMultiplyByP for 0-based replacement.
|
---|
1256 | *************************************************************************/
|
---|
1257 | public static void multiplybypfrombidiagonal(ref double[,] qp,
|
---|
1258 | int m,
|
---|
1259 | int n,
|
---|
1260 | ref double[] taup,
|
---|
1261 | ref double[,] z,
|
---|
1262 | int zrows,
|
---|
1263 | int zcolumns,
|
---|
1264 | bool fromtheright,
|
---|
1265 | bool dotranspose)
|
---|
1266 | {
|
---|
1267 | int i = 0;
|
---|
1268 | int ip1 = 0;
|
---|
1269 | double[] v = new double[0];
|
---|
1270 | double[] work = new double[0];
|
---|
1271 | int vm = 0;
|
---|
1272 | int mx = 0;
|
---|
1273 | int i1 = 0;
|
---|
1274 | int i2 = 0;
|
---|
1275 | int istep = 0;
|
---|
1276 | int i_ = 0;
|
---|
1277 | int i1_ = 0;
|
---|
1278 |
|
---|
1279 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
1280 | {
|
---|
1281 | return;
|
---|
1282 | }
|
---|
1283 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
1284 |
|
---|
1285 | //
|
---|
1286 | // init
|
---|
1287 | //
|
---|
1288 | mx = Math.Max(m, n);
|
---|
1289 | mx = Math.Max(mx, zrows);
|
---|
1290 | mx = Math.Max(mx, zcolumns);
|
---|
1291 | v = new double[mx+1];
|
---|
1292 | work = new double[mx+1];
|
---|
1293 | v = new double[mx+1];
|
---|
1294 | work = new double[mx+1];
|
---|
1295 | if( m>=n )
|
---|
1296 | {
|
---|
1297 |
|
---|
1298 | //
|
---|
1299 | // setup
|
---|
1300 | //
|
---|
1301 | if( fromtheright )
|
---|
1302 | {
|
---|
1303 | i1 = n-1;
|
---|
1304 | i2 = 1;
|
---|
1305 | istep = -1;
|
---|
1306 | }
|
---|
1307 | else
|
---|
1308 | {
|
---|
1309 | i1 = 1;
|
---|
1310 | i2 = n-1;
|
---|
1311 | istep = +1;
|
---|
1312 | }
|
---|
1313 | if( !dotranspose )
|
---|
1314 | {
|
---|
1315 | i = i1;
|
---|
1316 | i1 = i2;
|
---|
1317 | i2 = i;
|
---|
1318 | istep = -istep;
|
---|
1319 | }
|
---|
1320 |
|
---|
1321 | //
|
---|
1322 | // Process
|
---|
1323 | //
|
---|
1324 | if( n-1>0 )
|
---|
1325 | {
|
---|
1326 | i = i1;
|
---|
1327 | do
|
---|
1328 | {
|
---|
1329 | vm = n-i;
|
---|
1330 | ip1 = i+1;
|
---|
1331 | i1_ = (ip1) - (1);
|
---|
1332 | for(i_=1; i_<=vm;i_++)
|
---|
1333 | {
|
---|
1334 | v[i_] = qp[i,i_+i1_];
|
---|
1335 | }
|
---|
1336 | v[1] = 1;
|
---|
1337 | if( fromtheright )
|
---|
1338 | {
|
---|
1339 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i+1, n, ref work);
|
---|
1340 | }
|
---|
1341 | else
|
---|
1342 | {
|
---|
1343 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n, 1, zcolumns, ref work);
|
---|
1344 | }
|
---|
1345 | i = i+istep;
|
---|
1346 | }
|
---|
1347 | while( i!=i2+istep );
|
---|
1348 | }
|
---|
1349 | }
|
---|
1350 | else
|
---|
1351 | {
|
---|
1352 |
|
---|
1353 | //
|
---|
1354 | // setup
|
---|
1355 | //
|
---|
1356 | if( fromtheright )
|
---|
1357 | {
|
---|
1358 | i1 = m;
|
---|
1359 | i2 = 1;
|
---|
1360 | istep = -1;
|
---|
1361 | }
|
---|
1362 | else
|
---|
1363 | {
|
---|
1364 | i1 = 1;
|
---|
1365 | i2 = m;
|
---|
1366 | istep = +1;
|
---|
1367 | }
|
---|
1368 | if( !dotranspose )
|
---|
1369 | {
|
---|
1370 | i = i1;
|
---|
1371 | i1 = i2;
|
---|
1372 | i2 = i;
|
---|
1373 | istep = -istep;
|
---|
1374 | }
|
---|
1375 |
|
---|
1376 | //
|
---|
1377 | // Process
|
---|
1378 | //
|
---|
1379 | i = i1;
|
---|
1380 | do
|
---|
1381 | {
|
---|
1382 | vm = n-i+1;
|
---|
1383 | i1_ = (i) - (1);
|
---|
1384 | for(i_=1; i_<=vm;i_++)
|
---|
1385 | {
|
---|
1386 | v[i_] = qp[i,i_+i1_];
|
---|
1387 | }
|
---|
1388 | v[1] = 1;
|
---|
1389 | if( fromtheright )
|
---|
1390 | {
|
---|
1391 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i, n, ref work);
|
---|
1392 | }
|
---|
1393 | else
|
---|
1394 | {
|
---|
1395 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n, 1, zcolumns, ref work);
|
---|
1396 | }
|
---|
1397 | i = i+istep;
|
---|
1398 | }
|
---|
1399 | while( i!=i2+istep );
|
---|
1400 | }
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 |
|
---|
1404 | /*************************************************************************
|
---|
1405 | Obsolete 1-based subroutine.
|
---|
1406 | See RMatrixBDUnpackDiagonals for 0-based replacement.
|
---|
1407 | *************************************************************************/
|
---|
1408 | public static void unpackdiagonalsfrombidiagonal(ref double[,] b,
|
---|
1409 | int m,
|
---|
1410 | int n,
|
---|
1411 | ref bool isupper,
|
---|
1412 | ref double[] d,
|
---|
1413 | ref double[] e)
|
---|
1414 | {
|
---|
1415 | int i = 0;
|
---|
1416 |
|
---|
1417 | isupper = m>=n;
|
---|
1418 | if( m==0 | n==0 )
|
---|
1419 | {
|
---|
1420 | return;
|
---|
1421 | }
|
---|
1422 | if( isupper )
|
---|
1423 | {
|
---|
1424 | d = new double[n+1];
|
---|
1425 | e = new double[n+1];
|
---|
1426 | for(i=1; i<=n-1; i++)
|
---|
1427 | {
|
---|
1428 | d[i] = b[i,i];
|
---|
1429 | e[i] = b[i,i+1];
|
---|
1430 | }
|
---|
1431 | d[n] = b[n,n];
|
---|
1432 | }
|
---|
1433 | else
|
---|
1434 | {
|
---|
1435 | d = new double[m+1];
|
---|
1436 | e = new double[m+1];
|
---|
1437 | for(i=1; i<=m-1; i++)
|
---|
1438 | {
|
---|
1439 | d[i] = b[i,i];
|
---|
1440 | e[i] = b[i+1,i];
|
---|
1441 | }
|
---|
1442 | d[m] = b[m,m];
|
---|
1443 | }
|
---|
1444 | }
|
---|
1445 | }
|
---|
1446 | }
|
---|