[2154] | 1 | /*************************************************************************
|
---|
| 2 | Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
|
---|
| 3 |
|
---|
| 4 | Contributors:
|
---|
| 5 | * Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
|
---|
| 6 | pseudocode.
|
---|
| 7 |
|
---|
| 8 | See subroutines comments for additional copyrights.
|
---|
| 9 |
|
---|
[2430] | 10 | >>> SOURCE LICENSE >>>
|
---|
| 11 | This program is free software; you can redistribute it and/or modify
|
---|
| 12 | it under the terms of the GNU General Public License as published by
|
---|
| 13 | the Free Software Foundation (www.fsf.org); either version 2 of the
|
---|
| 14 | License, or (at your option) any later version.
|
---|
[2154] | 15 |
|
---|
[2430] | 16 | This program is distributed in the hope that it will be useful,
|
---|
| 17 | but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | GNU General Public License for more details.
|
---|
[2154] | 20 |
|
---|
[2430] | 21 | A copy of the GNU General Public License is available at
|
---|
| 22 | http://www.fsf.org/licensing/licenses
|
---|
[2154] | 23 |
|
---|
[2430] | 24 | >>> END OF LICENSE >>>
|
---|
[2154] | 25 | *************************************************************************/
|
---|
| 26 |
|
---|
| 27 | using System;
|
---|
| 28 |
|
---|
[2430] | 29 | namespace alglib
|
---|
[2154] | 30 | {
|
---|
[2430] | 31 | public class bidiagonal
|
---|
| 32 | {
|
---|
| 33 | /*************************************************************************
|
---|
| 34 | Reduction of a rectangular matrix to bidiagonal form
|
---|
[2154] | 35 |
|
---|
[2430] | 36 | The algorithm reduces the rectangular matrix A to bidiagonal form by
|
---|
| 37 | orthogonal transformations P and Q: A = Q*B*P.
|
---|
[2154] | 38 |
|
---|
[2430] | 39 | Input parameters:
|
---|
| 40 | A - source matrix. array[0..M-1, 0..N-1]
|
---|
| 41 | M - number of rows in matrix A.
|
---|
| 42 | N - number of columns in matrix A.
|
---|
[2154] | 43 |
|
---|
[2430] | 44 | Output parameters:
|
---|
| 45 | A - matrices Q, B, P in compact form (see below).
|
---|
| 46 | TauQ - scalar factors which are used to form matrix Q.
|
---|
| 47 | TauP - scalar factors which are used to form matrix P.
|
---|
[2154] | 48 |
|
---|
[2430] | 49 | The main diagonal and one of the secondary diagonals of matrix A are
|
---|
| 50 | replaced with bidiagonal matrix B. Other elements contain elementary
|
---|
| 51 | reflections which form MxM matrix Q and NxN matrix P, respectively.
|
---|
[2154] | 52 |
|
---|
[2430] | 53 | If M>=N, B is the upper bidiagonal MxN matrix and is stored in the
|
---|
| 54 | corresponding elements of matrix A. Matrix Q is represented as a
|
---|
| 55 | product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where
|
---|
| 56 | H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and
|
---|
| 57 | vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is
|
---|
| 58 | stored in elements A(i+1:m-1,i). Matrix P is as follows: P =
|
---|
| 59 | G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
|
---|
| 60 | u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).
|
---|
[2154] | 61 |
|
---|
[2430] | 62 | If M<N, B is the lower bidiagonal MxN matrix and is stored in the
|
---|
| 63 | corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where
|
---|
| 64 | H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
|
---|
| 65 | is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1),
|
---|
| 66 | G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1)
|
---|
| 67 | is stored in A(i,i+1:n-1).
|
---|
[2154] | 68 |
|
---|
[2430] | 69 | EXAMPLE:
|
---|
[2154] | 70 |
|
---|
[2430] | 71 | m=6, n=5 (m > n): m=5, n=6 (m < n):
|
---|
[2154] | 72 |
|
---|
[2430] | 73 | ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
|
---|
| 74 | ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
|
---|
| 75 | ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
|
---|
| 76 | ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
|
---|
| 77 | ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
|
---|
| 78 | ( v1 v2 v3 v4 v5 )
|
---|
[2154] | 79 |
|
---|
[2430] | 80 | Here vi and ui are vectors which form H(i) and G(i), and d and e -
|
---|
| 81 | are the diagonal and off-diagonal elements of matrix B.
|
---|
| 82 | *************************************************************************/
|
---|
| 83 | public static void rmatrixbd(ref double[,] a,
|
---|
| 84 | int m,
|
---|
| 85 | int n,
|
---|
| 86 | ref double[] tauq,
|
---|
| 87 | ref double[] taup)
|
---|
| 88 | {
|
---|
| 89 | double[] work = new double[0];
|
---|
| 90 | double[] t = new double[0];
|
---|
| 91 | int minmn = 0;
|
---|
| 92 | int maxmn = 0;
|
---|
| 93 | int i = 0;
|
---|
| 94 | int j = 0;
|
---|
| 95 | double ltau = 0;
|
---|
| 96 | int i_ = 0;
|
---|
| 97 | int i1_ = 0;
|
---|
[2154] | 98 |
|
---|
| 99 |
|
---|
| 100 | //
|
---|
[2430] | 101 | // Prepare
|
---|
[2154] | 102 | //
|
---|
[2430] | 103 | if( n<=0 | m<=0 )
|
---|
[2154] | 104 | {
|
---|
[2430] | 105 | return;
|
---|
| 106 | }
|
---|
| 107 | minmn = Math.Min(m, n);
|
---|
| 108 | maxmn = Math.Max(m, n);
|
---|
| 109 | work = new double[maxmn+1];
|
---|
| 110 | t = new double[maxmn+1];
|
---|
| 111 | if( m>=n )
|
---|
| 112 | {
|
---|
| 113 | tauq = new double[n-1+1];
|
---|
| 114 | taup = new double[n-1+1];
|
---|
| 115 | }
|
---|
| 116 | else
|
---|
| 117 | {
|
---|
| 118 | tauq = new double[m-1+1];
|
---|
| 119 | taup = new double[m-1+1];
|
---|
| 120 | }
|
---|
| 121 | if( m>=n )
|
---|
| 122 | {
|
---|
[2154] | 123 |
|
---|
| 124 | //
|
---|
[2430] | 125 | // Reduce to upper bidiagonal form
|
---|
[2154] | 126 | //
|
---|
[2430] | 127 | for(i=0; i<=n-1; i++)
|
---|
[2154] | 128 | {
|
---|
| 129 |
|
---|
| 130 | //
|
---|
[2430] | 131 | // Generate elementary reflector H(i) to annihilate A(i+1:m-1,i)
|
---|
[2154] | 132 | //
|
---|
[2430] | 133 | i1_ = (i) - (1);
|
---|
| 134 | for(i_=1; i_<=m-i;i_++)
|
---|
[2154] | 135 | {
|
---|
[2430] | 136 | t[i_] = a[i_+i1_,i];
|
---|
[2154] | 137 | }
|
---|
[2430] | 138 | reflections.generatereflection(ref t, m-i, ref ltau);
|
---|
| 139 | tauq[i] = ltau;
|
---|
| 140 | i1_ = (1) - (i);
|
---|
| 141 | for(i_=i; i_<=m-1;i_++)
|
---|
[2154] | 142 | {
|
---|
[2430] | 143 | a[i_,i] = t[i_+i1_];
|
---|
[2154] | 144 | }
|
---|
| 145 | t[1] = 1;
|
---|
| 146 |
|
---|
| 147 | //
|
---|
[2430] | 148 | // Apply H(i) to A(i:m-1,i+1:n-1) from the left
|
---|
[2154] | 149 | //
|
---|
[2430] | 150 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m-1, i+1, n-1, ref work);
|
---|
| 151 | if( i<n-1 )
|
---|
| 152 | {
|
---|
| 153 |
|
---|
| 154 | //
|
---|
| 155 | // Generate elementary reflector G(i) to annihilate
|
---|
| 156 | // A(i,i+2:n-1)
|
---|
| 157 | //
|
---|
| 158 | i1_ = (i+1) - (1);
|
---|
| 159 | for(i_=1; i_<=n-i-1;i_++)
|
---|
| 160 | {
|
---|
| 161 | t[i_] = a[i,i_+i1_];
|
---|
| 162 | }
|
---|
| 163 | reflections.generatereflection(ref t, n-1-i, ref ltau);
|
---|
| 164 | taup[i] = ltau;
|
---|
| 165 | i1_ = (1) - (i+1);
|
---|
| 166 | for(i_=i+1; i_<=n-1;i_++)
|
---|
| 167 | {
|
---|
| 168 | a[i,i_] = t[i_+i1_];
|
---|
| 169 | }
|
---|
| 170 | t[1] = 1;
|
---|
| 171 |
|
---|
| 172 | //
|
---|
| 173 | // Apply G(i) to A(i+1:m-1,i+1:n-1) from the right
|
---|
| 174 | //
|
---|
| 175 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
| 176 | }
|
---|
| 177 | else
|
---|
| 178 | {
|
---|
| 179 | taup[i] = 0;
|
---|
| 180 | }
|
---|
[2154] | 181 | }
|
---|
| 182 | }
|
---|
[2430] | 183 | else
|
---|
[2154] | 184 | {
|
---|
| 185 |
|
---|
| 186 | //
|
---|
[2430] | 187 | // Reduce to lower bidiagonal form
|
---|
[2154] | 188 | //
|
---|
[2430] | 189 | for(i=0; i<=m-1; i++)
|
---|
[2154] | 190 | {
|
---|
| 191 |
|
---|
| 192 | //
|
---|
[2430] | 193 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n-1)
|
---|
[2154] | 194 | //
|
---|
[2430] | 195 | i1_ = (i) - (1);
|
---|
| 196 | for(i_=1; i_<=n-i;i_++)
|
---|
[2154] | 197 | {
|
---|
[2430] | 198 | t[i_] = a[i,i_+i1_];
|
---|
[2154] | 199 | }
|
---|
[2430] | 200 | reflections.generatereflection(ref t, n-i, ref ltau);
|
---|
| 201 | taup[i] = ltau;
|
---|
| 202 | i1_ = (1) - (i);
|
---|
| 203 | for(i_=i; i_<=n-1;i_++)
|
---|
[2154] | 204 | {
|
---|
[2430] | 205 | a[i,i_] = t[i_+i1_];
|
---|
[2154] | 206 | }
|
---|
| 207 | t[1] = 1;
|
---|
| 208 |
|
---|
| 209 | //
|
---|
[2430] | 210 | // Apply G(i) to A(i+1:m-1,i:n-1) from the right
|
---|
[2154] | 211 | //
|
---|
[2430] | 212 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m-1, i, n-1, ref work);
|
---|
| 213 | if( i<m-1 )
|
---|
| 214 | {
|
---|
| 215 |
|
---|
| 216 | //
|
---|
| 217 | // Generate elementary reflector H(i) to annihilate
|
---|
| 218 | // A(i+2:m-1,i)
|
---|
| 219 | //
|
---|
| 220 | i1_ = (i+1) - (1);
|
---|
| 221 | for(i_=1; i_<=m-1-i;i_++)
|
---|
| 222 | {
|
---|
| 223 | t[i_] = a[i_+i1_,i];
|
---|
| 224 | }
|
---|
| 225 | reflections.generatereflection(ref t, m-1-i, ref ltau);
|
---|
| 226 | tauq[i] = ltau;
|
---|
| 227 | i1_ = (1) - (i+1);
|
---|
| 228 | for(i_=i+1; i_<=m-1;i_++)
|
---|
| 229 | {
|
---|
| 230 | a[i_,i] = t[i_+i1_];
|
---|
| 231 | }
|
---|
| 232 | t[1] = 1;
|
---|
| 233 |
|
---|
| 234 | //
|
---|
| 235 | // Apply H(i) to A(i+1:m-1,i+1:n-1) from the left
|
---|
| 236 | //
|
---|
| 237 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m-1, i+1, n-1, ref work);
|
---|
| 238 | }
|
---|
| 239 | else
|
---|
| 240 | {
|
---|
| 241 | tauq[i] = 0;
|
---|
| 242 | }
|
---|
[2154] | 243 | }
|
---|
| 244 | }
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 |
|
---|
[2430] | 248 | /*************************************************************************
|
---|
| 249 | Unpacking matrix Q which reduces a matrix to bidiagonal form.
|
---|
[2154] | 250 |
|
---|
[2430] | 251 | Input parameters:
|
---|
| 252 | QP - matrices Q and P in compact form.
|
---|
| 253 | Output of ToBidiagonal subroutine.
|
---|
| 254 | M - number of rows in matrix A.
|
---|
| 255 | N - number of columns in matrix A.
|
---|
| 256 | TAUQ - scalar factors which are used to form Q.
|
---|
| 257 | Output of ToBidiagonal subroutine.
|
---|
| 258 | QColumns - required number of columns in matrix Q.
|
---|
| 259 | M>=QColumns>=0.
|
---|
[2154] | 260 |
|
---|
[2430] | 261 | Output parameters:
|
---|
| 262 | Q - first QColumns columns of matrix Q.
|
---|
| 263 | Array[0..M-1, 0..QColumns-1]
|
---|
| 264 | If QColumns=0, the array is not modified.
|
---|
[2154] | 265 |
|
---|
[2430] | 266 | -- ALGLIB --
|
---|
| 267 | Copyright 2005 by Bochkanov Sergey
|
---|
| 268 | *************************************************************************/
|
---|
| 269 | public static void rmatrixbdunpackq(ref double[,] qp,
|
---|
| 270 | int m,
|
---|
| 271 | int n,
|
---|
| 272 | ref double[] tauq,
|
---|
| 273 | int qcolumns,
|
---|
| 274 | ref double[,] q)
|
---|
| 275 | {
|
---|
| 276 | int i = 0;
|
---|
| 277 | int j = 0;
|
---|
[2154] | 278 |
|
---|
[2430] | 279 | System.Diagnostics.Debug.Assert(qcolumns<=m, "RMatrixBDUnpackQ: QColumns>M!");
|
---|
| 280 | System.Diagnostics.Debug.Assert(qcolumns>=0, "RMatrixBDUnpackQ: QColumns<0!");
|
---|
| 281 | if( m==0 | n==0 | qcolumns==0 )
|
---|
[2154] | 282 | {
|
---|
[2430] | 283 | return;
|
---|
| 284 | }
|
---|
| 285 |
|
---|
| 286 | //
|
---|
| 287 | // prepare Q
|
---|
| 288 | //
|
---|
| 289 | q = new double[m-1+1, qcolumns-1+1];
|
---|
| 290 | for(i=0; i<=m-1; i++)
|
---|
| 291 | {
|
---|
| 292 | for(j=0; j<=qcolumns-1; j++)
|
---|
[2154] | 293 | {
|
---|
[2430] | 294 | if( i==j )
|
---|
| 295 | {
|
---|
| 296 | q[i,j] = 1;
|
---|
| 297 | }
|
---|
| 298 | else
|
---|
| 299 | {
|
---|
| 300 | q[i,j] = 0;
|
---|
| 301 | }
|
---|
[2154] | 302 | }
|
---|
| 303 | }
|
---|
[2430] | 304 |
|
---|
| 305 | //
|
---|
| 306 | // Calculate
|
---|
| 307 | //
|
---|
| 308 | rmatrixbdmultiplybyq(ref qp, m, n, ref tauq, ref q, m, qcolumns, false, false);
|
---|
[2154] | 309 | }
|
---|
| 310 |
|
---|
| 311 |
|
---|
[2430] | 312 | /*************************************************************************
|
---|
| 313 | Multiplication by matrix Q which reduces matrix A to bidiagonal form.
|
---|
[2154] | 314 |
|
---|
[2430] | 315 | The algorithm allows pre- or post-multiply by Q or Q'.
|
---|
[2154] | 316 |
|
---|
[2430] | 317 | Input parameters:
|
---|
| 318 | QP - matrices Q and P in compact form.
|
---|
| 319 | Output of ToBidiagonal subroutine.
|
---|
| 320 | M - number of rows in matrix A.
|
---|
| 321 | N - number of columns in matrix A.
|
---|
| 322 | TAUQ - scalar factors which are used to form Q.
|
---|
| 323 | Output of ToBidiagonal subroutine.
|
---|
| 324 | Z - multiplied matrix.
|
---|
| 325 | array[0..ZRows-1,0..ZColumns-1]
|
---|
| 326 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
| 327 | ZRows=M, otherwise ZRows can be arbitrary.
|
---|
| 328 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
| 329 | ZColumns=M, otherwise ZColumns can be arbitrary.
|
---|
| 330 | FromTheRight - pre- or post-multiply.
|
---|
| 331 | DoTranspose - multiply by Q or Q'.
|
---|
[2154] | 332 |
|
---|
[2430] | 333 | Output parameters:
|
---|
| 334 | Z - product of Z and Q.
|
---|
| 335 | Array[0..ZRows-1,0..ZColumns-1]
|
---|
| 336 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
[2154] | 337 |
|
---|
[2430] | 338 | -- ALGLIB --
|
---|
| 339 | Copyright 2005 by Bochkanov Sergey
|
---|
| 340 | *************************************************************************/
|
---|
| 341 | public static void rmatrixbdmultiplybyq(ref double[,] qp,
|
---|
| 342 | int m,
|
---|
| 343 | int n,
|
---|
| 344 | ref double[] tauq,
|
---|
| 345 | ref double[,] z,
|
---|
| 346 | int zrows,
|
---|
| 347 | int zcolumns,
|
---|
| 348 | bool fromtheright,
|
---|
| 349 | bool dotranspose)
|
---|
| 350 | {
|
---|
| 351 | int i = 0;
|
---|
| 352 | int i1 = 0;
|
---|
| 353 | int i2 = 0;
|
---|
| 354 | int istep = 0;
|
---|
| 355 | double[] v = new double[0];
|
---|
| 356 | double[] work = new double[0];
|
---|
| 357 | int mx = 0;
|
---|
| 358 | int i_ = 0;
|
---|
| 359 | int i1_ = 0;
|
---|
[2154] | 360 |
|
---|
[2430] | 361 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
[2154] | 362 | {
|
---|
[2430] | 363 | return;
|
---|
[2154] | 364 | }
|
---|
[2430] | 365 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "RMatrixBDMultiplyByQ: incorrect Z size!");
|
---|
[2154] | 366 |
|
---|
| 367 | //
|
---|
[2430] | 368 | // init
|
---|
[2154] | 369 | //
|
---|
[2430] | 370 | mx = Math.Max(m, n);
|
---|
| 371 | mx = Math.Max(mx, zrows);
|
---|
| 372 | mx = Math.Max(mx, zcolumns);
|
---|
| 373 | v = new double[mx+1];
|
---|
| 374 | work = new double[mx+1];
|
---|
| 375 | if( m>=n )
|
---|
[2154] | 376 | {
|
---|
[2430] | 377 |
|
---|
| 378 | //
|
---|
| 379 | // setup
|
---|
| 380 | //
|
---|
[2154] | 381 | if( fromtheright )
|
---|
| 382 | {
|
---|
[2430] | 383 | i1 = 0;
|
---|
| 384 | i2 = n-1;
|
---|
| 385 | istep = +1;
|
---|
[2154] | 386 | }
|
---|
| 387 | else
|
---|
| 388 | {
|
---|
[2430] | 389 | i1 = n-1;
|
---|
| 390 | i2 = 0;
|
---|
| 391 | istep = -1;
|
---|
[2154] | 392 | }
|
---|
[2430] | 393 | if( dotranspose )
|
---|
| 394 | {
|
---|
| 395 | i = i1;
|
---|
| 396 | i1 = i2;
|
---|
| 397 | i2 = i;
|
---|
| 398 | istep = -istep;
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 | //
|
---|
| 402 | // Process
|
---|
| 403 | //
|
---|
[2154] | 404 | i = i1;
|
---|
| 405 | do
|
---|
| 406 | {
|
---|
[2430] | 407 | i1_ = (i) - (1);
|
---|
| 408 | for(i_=1; i_<=m-i;i_++)
|
---|
[2154] | 409 | {
|
---|
| 410 | v[i_] = qp[i_+i1_,i];
|
---|
| 411 | }
|
---|
| 412 | v[1] = 1;
|
---|
| 413 | if( fromtheright )
|
---|
| 414 | {
|
---|
[2430] | 415 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i, m-1, ref work);
|
---|
[2154] | 416 | }
|
---|
| 417 | else
|
---|
| 418 | {
|
---|
[2430] | 419 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m-1, 0, zcolumns-1, ref work);
|
---|
[2154] | 420 | }
|
---|
| 421 | i = i+istep;
|
---|
| 422 | }
|
---|
| 423 | while( i!=i2+istep );
|
---|
| 424 | }
|
---|
[2430] | 425 | else
|
---|
[2154] | 426 | {
|
---|
[2430] | 427 |
|
---|
| 428 | //
|
---|
| 429 | // setup
|
---|
| 430 | //
|
---|
| 431 | if( fromtheright )
|
---|
[2154] | 432 | {
|
---|
[2430] | 433 | i1 = 0;
|
---|
| 434 | i2 = m-2;
|
---|
| 435 | istep = +1;
|
---|
[2154] | 436 | }
|
---|
| 437 | else
|
---|
| 438 | {
|
---|
[2430] | 439 | i1 = m-2;
|
---|
| 440 | i2 = 0;
|
---|
| 441 | istep = -1;
|
---|
[2154] | 442 | }
|
---|
[2430] | 443 | if( dotranspose )
|
---|
| 444 | {
|
---|
| 445 | i = i1;
|
---|
| 446 | i1 = i2;
|
---|
| 447 | i2 = i;
|
---|
| 448 | istep = -istep;
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | //
|
---|
| 452 | // Process
|
---|
| 453 | //
|
---|
| 454 | if( m-1>0 )
|
---|
| 455 | {
|
---|
| 456 | i = i1;
|
---|
| 457 | do
|
---|
| 458 | {
|
---|
| 459 | i1_ = (i+1) - (1);
|
---|
| 460 | for(i_=1; i_<=m-i-1;i_++)
|
---|
| 461 | {
|
---|
| 462 | v[i_] = qp[i_+i1_,i];
|
---|
| 463 | }
|
---|
| 464 | v[1] = 1;
|
---|
| 465 | if( fromtheright )
|
---|
| 466 | {
|
---|
| 467 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 0, zrows-1, i+1, m-1, ref work);
|
---|
| 468 | }
|
---|
| 469 | else
|
---|
| 470 | {
|
---|
| 471 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m-1, 0, zcolumns-1, ref work);
|
---|
| 472 | }
|
---|
| 473 | i = i+istep;
|
---|
| 474 | }
|
---|
| 475 | while( i!=i2+istep );
|
---|
| 476 | }
|
---|
[2154] | 477 | }
|
---|
| 478 | }
|
---|
| 479 |
|
---|
| 480 |
|
---|
[2430] | 481 | /*************************************************************************
|
---|
| 482 | Unpacking matrix P which reduces matrix A to bidiagonal form.
|
---|
| 483 | The subroutine returns transposed matrix P.
|
---|
[2154] | 484 |
|
---|
[2430] | 485 | Input parameters:
|
---|
| 486 | QP - matrices Q and P in compact form.
|
---|
| 487 | Output of ToBidiagonal subroutine.
|
---|
| 488 | M - number of rows in matrix A.
|
---|
| 489 | N - number of columns in matrix A.
|
---|
| 490 | TAUP - scalar factors which are used to form P.
|
---|
| 491 | Output of ToBidiagonal subroutine.
|
---|
| 492 | PTRows - required number of rows of matrix P^T. N >= PTRows >= 0.
|
---|
[2154] | 493 |
|
---|
[2430] | 494 | Output parameters:
|
---|
| 495 | PT - first PTRows columns of matrix P^T
|
---|
| 496 | Array[0..PTRows-1, 0..N-1]
|
---|
| 497 | If PTRows=0, the array is not modified.
|
---|
[2154] | 498 |
|
---|
[2430] | 499 | -- ALGLIB --
|
---|
| 500 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
| 501 | *************************************************************************/
|
---|
| 502 | public static void rmatrixbdunpackpt(ref double[,] qp,
|
---|
| 503 | int m,
|
---|
| 504 | int n,
|
---|
| 505 | ref double[] taup,
|
---|
| 506 | int ptrows,
|
---|
| 507 | ref double[,] pt)
|
---|
| 508 | {
|
---|
| 509 | int i = 0;
|
---|
| 510 | int j = 0;
|
---|
[2154] | 511 |
|
---|
[2430] | 512 | System.Diagnostics.Debug.Assert(ptrows<=n, "RMatrixBDUnpackPT: PTRows>N!");
|
---|
| 513 | System.Diagnostics.Debug.Assert(ptrows>=0, "RMatrixBDUnpackPT: PTRows<0!");
|
---|
| 514 | if( m==0 | n==0 | ptrows==0 )
|
---|
[2154] | 515 | {
|
---|
[2430] | 516 | return;
|
---|
[2154] | 517 | }
|
---|
| 518 |
|
---|
| 519 | //
|
---|
[2430] | 520 | // prepare PT
|
---|
[2154] | 521 | //
|
---|
[2430] | 522 | pt = new double[ptrows-1+1, n-1+1];
|
---|
| 523 | for(i=0; i<=ptrows-1; i++)
|
---|
[2154] | 524 | {
|
---|
[2430] | 525 | for(j=0; j<=n-1; j++)
|
---|
[2154] | 526 | {
|
---|
[2430] | 527 | if( i==j )
|
---|
[2154] | 528 | {
|
---|
[2430] | 529 | pt[i,j] = 1;
|
---|
[2154] | 530 | }
|
---|
| 531 | else
|
---|
| 532 | {
|
---|
[2430] | 533 | pt[i,j] = 0;
|
---|
[2154] | 534 | }
|
---|
| 535 | }
|
---|
| 536 | }
|
---|
| 537 |
|
---|
| 538 | //
|
---|
[2430] | 539 | // Calculate
|
---|
[2154] | 540 | //
|
---|
[2430] | 541 | rmatrixbdmultiplybyp(ref qp, m, n, ref taup, ref pt, ptrows, n, true, true);
|
---|
| 542 | }
|
---|
| 543 |
|
---|
| 544 |
|
---|
| 545 | /*************************************************************************
|
---|
| 546 | Multiplication by matrix P which reduces matrix A to bidiagonal form.
|
---|
| 547 |
|
---|
| 548 | The algorithm allows pre- or post-multiply by P or P'.
|
---|
| 549 |
|
---|
| 550 | Input parameters:
|
---|
| 551 | QP - matrices Q and P in compact form.
|
---|
| 552 | Output of RMatrixBD subroutine.
|
---|
| 553 | M - number of rows in matrix A.
|
---|
| 554 | N - number of columns in matrix A.
|
---|
| 555 | TAUP - scalar factors which are used to form P.
|
---|
| 556 | Output of RMatrixBD subroutine.
|
---|
| 557 | Z - multiplied matrix.
|
---|
| 558 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
| 559 | ZRows - number of rows in matrix Z. If FromTheRight=False,
|
---|
| 560 | ZRows=N, otherwise ZRows can be arbitrary.
|
---|
| 561 | ZColumns - number of columns in matrix Z. If FromTheRight=True,
|
---|
| 562 | ZColumns=N, otherwise ZColumns can be arbitrary.
|
---|
| 563 | FromTheRight - pre- or post-multiply.
|
---|
| 564 | DoTranspose - multiply by P or P'.
|
---|
| 565 |
|
---|
| 566 | Output parameters:
|
---|
| 567 | Z - product of Z and P.
|
---|
| 568 | Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
|
---|
| 569 | If ZRows=0 or ZColumns=0, the array is not modified.
|
---|
| 570 |
|
---|
| 571 | -- ALGLIB --
|
---|
| 572 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
| 573 | *************************************************************************/
|
---|
| 574 | public static void rmatrixbdmultiplybyp(ref double[,] qp,
|
---|
| 575 | int m,
|
---|
| 576 | int n,
|
---|
| 577 | ref double[] taup,
|
---|
| 578 | ref double[,] z,
|
---|
| 579 | int zrows,
|
---|
| 580 | int zcolumns,
|
---|
| 581 | bool fromtheright,
|
---|
| 582 | bool dotranspose)
|
---|
| 583 | {
|
---|
| 584 | int i = 0;
|
---|
| 585 | double[] v = new double[0];
|
---|
| 586 | double[] work = new double[0];
|
---|
| 587 | int mx = 0;
|
---|
| 588 | int i1 = 0;
|
---|
| 589 | int i2 = 0;
|
---|
| 590 | int istep = 0;
|
---|
| 591 | int i_ = 0;
|
---|
| 592 | int i1_ = 0;
|
---|
| 593 |
|
---|
| 594 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
[2154] | 595 | {
|
---|
[2430] | 596 | return;
|
---|
[2154] | 597 | }
|
---|
[2430] | 598 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "RMatrixBDMultiplyByP: incorrect Z size!");
|
---|
[2154] | 599 |
|
---|
| 600 | //
|
---|
[2430] | 601 | // init
|
---|
[2154] | 602 | //
|
---|
[2430] | 603 | mx = Math.Max(m, n);
|
---|
| 604 | mx = Math.Max(mx, zrows);
|
---|
| 605 | mx = Math.Max(mx, zcolumns);
|
---|
| 606 | v = new double[mx+1];
|
---|
| 607 | work = new double[mx+1];
|
---|
| 608 | v = new double[mx+1];
|
---|
| 609 | work = new double[mx+1];
|
---|
| 610 | if( m>=n )
|
---|
[2154] | 611 | {
|
---|
[2430] | 612 |
|
---|
| 613 | //
|
---|
| 614 | // setup
|
---|
| 615 | //
|
---|
| 616 | if( fromtheright )
|
---|
[2154] | 617 | {
|
---|
[2430] | 618 | i1 = n-2;
|
---|
| 619 | i2 = 0;
|
---|
| 620 | istep = -1;
|
---|
[2154] | 621 | }
|
---|
[2430] | 622 | else
|
---|
| 623 | {
|
---|
| 624 | i1 = 0;
|
---|
| 625 | i2 = n-2;
|
---|
| 626 | istep = +1;
|
---|
| 627 | }
|
---|
| 628 | if( !dotranspose )
|
---|
| 629 | {
|
---|
| 630 | i = i1;
|
---|
| 631 | i1 = i2;
|
---|
| 632 | i2 = i;
|
---|
| 633 | istep = -istep;
|
---|
| 634 | }
|
---|
| 635 |
|
---|
| 636 | //
|
---|
| 637 | // Process
|
---|
| 638 | //
|
---|
| 639 | if( n-1>0 )
|
---|
| 640 | {
|
---|
| 641 | i = i1;
|
---|
| 642 | do
|
---|
| 643 | {
|
---|
| 644 | i1_ = (i+1) - (1);
|
---|
| 645 | for(i_=1; i_<=n-1-i;i_++)
|
---|
| 646 | {
|
---|
| 647 | v[i_] = qp[i,i_+i1_];
|
---|
| 648 | }
|
---|
| 649 | v[1] = 1;
|
---|
| 650 | if( fromtheright )
|
---|
| 651 | {
|
---|
| 652 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i+1, n-1, ref work);
|
---|
| 653 | }
|
---|
| 654 | else
|
---|
| 655 | {
|
---|
| 656 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n-1, 0, zcolumns-1, ref work);
|
---|
| 657 | }
|
---|
| 658 | i = i+istep;
|
---|
| 659 | }
|
---|
| 660 | while( i!=i2+istep );
|
---|
| 661 | }
|
---|
| 662 | }
|
---|
| 663 | else
|
---|
| 664 | {
|
---|
| 665 |
|
---|
| 666 | //
|
---|
| 667 | // setup
|
---|
| 668 | //
|
---|
[2154] | 669 | if( fromtheright )
|
---|
| 670 | {
|
---|
[2430] | 671 | i1 = m-1;
|
---|
| 672 | i2 = 0;
|
---|
| 673 | istep = -1;
|
---|
[2154] | 674 | }
|
---|
| 675 | else
|
---|
| 676 | {
|
---|
[2430] | 677 | i1 = 0;
|
---|
| 678 | i2 = m-1;
|
---|
| 679 | istep = +1;
|
---|
[2154] | 680 | }
|
---|
[2430] | 681 | if( !dotranspose )
|
---|
| 682 | {
|
---|
| 683 | i = i1;
|
---|
| 684 | i1 = i2;
|
---|
| 685 | i2 = i;
|
---|
| 686 | istep = -istep;
|
---|
| 687 | }
|
---|
| 688 |
|
---|
| 689 | //
|
---|
| 690 | // Process
|
---|
| 691 | //
|
---|
| 692 | i = i1;
|
---|
| 693 | do
|
---|
| 694 | {
|
---|
| 695 | i1_ = (i) - (1);
|
---|
| 696 | for(i_=1; i_<=n-i;i_++)
|
---|
| 697 | {
|
---|
| 698 | v[i_] = qp[i,i_+i1_];
|
---|
| 699 | }
|
---|
| 700 | v[1] = 1;
|
---|
| 701 | if( fromtheright )
|
---|
| 702 | {
|
---|
| 703 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 0, zrows-1, i, n-1, ref work);
|
---|
| 704 | }
|
---|
| 705 | else
|
---|
| 706 | {
|
---|
| 707 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n-1, 0, zcolumns-1, ref work);
|
---|
| 708 | }
|
---|
| 709 | i = i+istep;
|
---|
| 710 | }
|
---|
| 711 | while( i!=i2+istep );
|
---|
[2154] | 712 | }
|
---|
| 713 | }
|
---|
| 714 |
|
---|
| 715 |
|
---|
[2430] | 716 | /*************************************************************************
|
---|
| 717 | Unpacking of the main and secondary diagonals of bidiagonal decomposition
|
---|
| 718 | of matrix A.
|
---|
[2154] | 719 |
|
---|
[2430] | 720 | Input parameters:
|
---|
| 721 | B - output of RMatrixBD subroutine.
|
---|
| 722 | M - number of rows in matrix B.
|
---|
| 723 | N - number of columns in matrix B.
|
---|
[2154] | 724 |
|
---|
[2430] | 725 | Output parameters:
|
---|
| 726 | IsUpper - True, if the matrix is upper bidiagonal.
|
---|
| 727 | otherwise IsUpper is False.
|
---|
| 728 | D - the main diagonal.
|
---|
| 729 | Array whose index ranges within [0..Min(M,N)-1].
|
---|
| 730 | E - the secondary diagonal (upper or lower, depending on
|
---|
| 731 | the value of IsUpper).
|
---|
| 732 | Array index ranges within [0..Min(M,N)-1], the last
|
---|
| 733 | element is not used.
|
---|
[2154] | 734 |
|
---|
[2430] | 735 | -- ALGLIB --
|
---|
| 736 | Copyright 2005-2007 by Bochkanov Sergey
|
---|
| 737 | *************************************************************************/
|
---|
| 738 | public static void rmatrixbdunpackdiagonals(ref double[,] b,
|
---|
| 739 | int m,
|
---|
| 740 | int n,
|
---|
| 741 | ref bool isupper,
|
---|
| 742 | ref double[] d,
|
---|
| 743 | ref double[] e)
|
---|
| 744 | {
|
---|
| 745 | int i = 0;
|
---|
[2154] | 746 |
|
---|
[2430] | 747 | isupper = m>=n;
|
---|
| 748 | if( m<=0 | n<=0 )
|
---|
[2154] | 749 | {
|
---|
[2430] | 750 | return;
|
---|
[2154] | 751 | }
|
---|
[2430] | 752 | if( isupper )
|
---|
[2154] | 753 | {
|
---|
[2430] | 754 | d = new double[n-1+1];
|
---|
| 755 | e = new double[n-1+1];
|
---|
| 756 | for(i=0; i<=n-2; i++)
|
---|
| 757 | {
|
---|
| 758 | d[i] = b[i,i];
|
---|
| 759 | e[i] = b[i,i+1];
|
---|
| 760 | }
|
---|
| 761 | d[n-1] = b[n-1,n-1];
|
---|
[2154] | 762 | }
|
---|
[2430] | 763 | else
|
---|
| 764 | {
|
---|
| 765 | d = new double[m-1+1];
|
---|
| 766 | e = new double[m-1+1];
|
---|
| 767 | for(i=0; i<=m-2; i++)
|
---|
| 768 | {
|
---|
| 769 | d[i] = b[i,i];
|
---|
| 770 | e[i] = b[i+1,i];
|
---|
| 771 | }
|
---|
| 772 | d[m-1] = b[m-1,m-1];
|
---|
| 773 | }
|
---|
[2154] | 774 | }
|
---|
| 775 |
|
---|
| 776 |
|
---|
[2430] | 777 | /*************************************************************************
|
---|
| 778 | Obsolete 1-based subroutine.
|
---|
| 779 | See RMatrixBD for 0-based replacement.
|
---|
| 780 | *************************************************************************/
|
---|
| 781 | public static void tobidiagonal(ref double[,] a,
|
---|
| 782 | int m,
|
---|
| 783 | int n,
|
---|
| 784 | ref double[] tauq,
|
---|
| 785 | ref double[] taup)
|
---|
| 786 | {
|
---|
| 787 | double[] work = new double[0];
|
---|
| 788 | double[] t = new double[0];
|
---|
| 789 | int minmn = 0;
|
---|
| 790 | int maxmn = 0;
|
---|
| 791 | int i = 0;
|
---|
| 792 | double ltau = 0;
|
---|
| 793 | int mmip1 = 0;
|
---|
| 794 | int nmi = 0;
|
---|
| 795 | int ip1 = 0;
|
---|
| 796 | int nmip1 = 0;
|
---|
| 797 | int mmi = 0;
|
---|
| 798 | int i_ = 0;
|
---|
| 799 | int i1_ = 0;
|
---|
[2154] | 800 |
|
---|
[2430] | 801 | minmn = Math.Min(m, n);
|
---|
| 802 | maxmn = Math.Max(m, n);
|
---|
| 803 | work = new double[maxmn+1];
|
---|
| 804 | t = new double[maxmn+1];
|
---|
| 805 | taup = new double[minmn+1];
|
---|
| 806 | tauq = new double[minmn+1];
|
---|
| 807 | if( m>=n )
|
---|
[2154] | 808 | {
|
---|
| 809 |
|
---|
| 810 | //
|
---|
[2430] | 811 | // Reduce to upper bidiagonal form
|
---|
[2154] | 812 | //
|
---|
[2430] | 813 | for(i=1; i<=n; i++)
|
---|
[2154] | 814 | {
|
---|
| 815 |
|
---|
| 816 | //
|
---|
[2430] | 817 | // Generate elementary reflector H(i) to annihilate A(i+1:m,i)
|
---|
[2154] | 818 | //
|
---|
[2430] | 819 | mmip1 = m-i+1;
|
---|
| 820 | i1_ = (i) - (1);
|
---|
| 821 | for(i_=1; i_<=mmip1;i_++)
|
---|
[2154] | 822 | {
|
---|
[2430] | 823 | t[i_] = a[i_+i1_,i];
|
---|
[2154] | 824 | }
|
---|
[2430] | 825 | reflections.generatereflection(ref t, mmip1, ref ltau);
|
---|
| 826 | tauq[i] = ltau;
|
---|
| 827 | i1_ = (1) - (i);
|
---|
| 828 | for(i_=i; i_<=m;i_++)
|
---|
[2154] | 829 | {
|
---|
[2430] | 830 | a[i_,i] = t[i_+i1_];
|
---|
[2154] | 831 | }
|
---|
| 832 | t[1] = 1;
|
---|
| 833 |
|
---|
| 834 | //
|
---|
[2430] | 835 | // Apply H(i) to A(i:m,i+1:n) from the left
|
---|
[2154] | 836 | //
|
---|
[2430] | 837 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i, m, i+1, n, ref work);
|
---|
| 838 | if( i<n )
|
---|
| 839 | {
|
---|
| 840 |
|
---|
| 841 | //
|
---|
| 842 | // Generate elementary reflector G(i) to annihilate
|
---|
| 843 | // A(i,i+2:n)
|
---|
| 844 | //
|
---|
| 845 | nmi = n-i;
|
---|
| 846 | ip1 = i+1;
|
---|
| 847 | i1_ = (ip1) - (1);
|
---|
| 848 | for(i_=1; i_<=nmi;i_++)
|
---|
| 849 | {
|
---|
| 850 | t[i_] = a[i,i_+i1_];
|
---|
| 851 | }
|
---|
| 852 | reflections.generatereflection(ref t, nmi, ref ltau);
|
---|
| 853 | taup[i] = ltau;
|
---|
| 854 | i1_ = (1) - (ip1);
|
---|
| 855 | for(i_=ip1; i_<=n;i_++)
|
---|
| 856 | {
|
---|
| 857 | a[i,i_] = t[i_+i1_];
|
---|
| 858 | }
|
---|
| 859 | t[1] = 1;
|
---|
| 860 |
|
---|
| 861 | //
|
---|
| 862 | // Apply G(i) to A(i+1:m,i+1:n) from the right
|
---|
| 863 | //
|
---|
| 864 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
| 865 | }
|
---|
| 866 | else
|
---|
| 867 | {
|
---|
| 868 | taup[i] = 0;
|
---|
| 869 | }
|
---|
[2154] | 870 | }
|
---|
| 871 | }
|
---|
[2430] | 872 | else
|
---|
[2154] | 873 | {
|
---|
| 874 |
|
---|
| 875 | //
|
---|
[2430] | 876 | // Reduce to lower bidiagonal form
|
---|
[2154] | 877 | //
|
---|
[2430] | 878 | for(i=1; i<=m; i++)
|
---|
[2154] | 879 | {
|
---|
| 880 |
|
---|
| 881 | //
|
---|
[2430] | 882 | // Generate elementary reflector G(i) to annihilate A(i,i+1:n)
|
---|
[2154] | 883 | //
|
---|
[2430] | 884 | nmip1 = n-i+1;
|
---|
| 885 | i1_ = (i) - (1);
|
---|
| 886 | for(i_=1; i_<=nmip1;i_++)
|
---|
[2154] | 887 | {
|
---|
[2430] | 888 | t[i_] = a[i,i_+i1_];
|
---|
[2154] | 889 | }
|
---|
[2430] | 890 | reflections.generatereflection(ref t, nmip1, ref ltau);
|
---|
| 891 | taup[i] = ltau;
|
---|
| 892 | i1_ = (1) - (i);
|
---|
| 893 | for(i_=i; i_<=n;i_++)
|
---|
[2154] | 894 | {
|
---|
[2430] | 895 | a[i,i_] = t[i_+i1_];
|
---|
[2154] | 896 | }
|
---|
| 897 | t[1] = 1;
|
---|
| 898 |
|
---|
| 899 | //
|
---|
[2430] | 900 | // Apply G(i) to A(i+1:m,i:n) from the right
|
---|
[2154] | 901 | //
|
---|
[2430] | 902 | reflections.applyreflectionfromtheright(ref a, ltau, ref t, i+1, m, i, n, ref work);
|
---|
| 903 | if( i<m )
|
---|
| 904 | {
|
---|
| 905 |
|
---|
| 906 | //
|
---|
| 907 | // Generate elementary reflector H(i) to annihilate
|
---|
| 908 | // A(i+2:m,i)
|
---|
| 909 | //
|
---|
| 910 | mmi = m-i;
|
---|
| 911 | ip1 = i+1;
|
---|
| 912 | i1_ = (ip1) - (1);
|
---|
| 913 | for(i_=1; i_<=mmi;i_++)
|
---|
| 914 | {
|
---|
| 915 | t[i_] = a[i_+i1_,i];
|
---|
| 916 | }
|
---|
| 917 | reflections.generatereflection(ref t, mmi, ref ltau);
|
---|
| 918 | tauq[i] = ltau;
|
---|
| 919 | i1_ = (1) - (ip1);
|
---|
| 920 | for(i_=ip1; i_<=m;i_++)
|
---|
| 921 | {
|
---|
| 922 | a[i_,i] = t[i_+i1_];
|
---|
| 923 | }
|
---|
| 924 | t[1] = 1;
|
---|
| 925 |
|
---|
| 926 | //
|
---|
| 927 | // Apply H(i) to A(i+1:m,i+1:n) from the left
|
---|
| 928 | //
|
---|
| 929 | reflections.applyreflectionfromtheleft(ref a, ltau, ref t, i+1, m, i+1, n, ref work);
|
---|
| 930 | }
|
---|
| 931 | else
|
---|
| 932 | {
|
---|
| 933 | tauq[i] = 0;
|
---|
| 934 | }
|
---|
[2154] | 935 | }
|
---|
| 936 | }
|
---|
| 937 | }
|
---|
| 938 |
|
---|
| 939 |
|
---|
[2430] | 940 | /*************************************************************************
|
---|
| 941 | Obsolete 1-based subroutine.
|
---|
| 942 | See RMatrixBDUnpackQ for 0-based replacement.
|
---|
| 943 | *************************************************************************/
|
---|
| 944 | public static void unpackqfrombidiagonal(ref double[,] qp,
|
---|
| 945 | int m,
|
---|
| 946 | int n,
|
---|
| 947 | ref double[] tauq,
|
---|
| 948 | int qcolumns,
|
---|
| 949 | ref double[,] q)
|
---|
| 950 | {
|
---|
| 951 | int i = 0;
|
---|
| 952 | int j = 0;
|
---|
| 953 | int ip1 = 0;
|
---|
| 954 | double[] v = new double[0];
|
---|
| 955 | double[] work = new double[0];
|
---|
| 956 | int vm = 0;
|
---|
| 957 | int i_ = 0;
|
---|
| 958 | int i1_ = 0;
|
---|
[2154] | 959 |
|
---|
[2430] | 960 | System.Diagnostics.Debug.Assert(qcolumns<=m, "UnpackQFromBidiagonal: QColumns>M!");
|
---|
| 961 | if( m==0 | n==0 | qcolumns==0 )
|
---|
[2154] | 962 | {
|
---|
[2430] | 963 | return;
|
---|
| 964 | }
|
---|
| 965 |
|
---|
| 966 | //
|
---|
| 967 | // init
|
---|
| 968 | //
|
---|
| 969 | q = new double[m+1, qcolumns+1];
|
---|
| 970 | v = new double[m+1];
|
---|
| 971 | work = new double[qcolumns+1];
|
---|
| 972 |
|
---|
| 973 | //
|
---|
| 974 | // prepare Q
|
---|
| 975 | //
|
---|
| 976 | for(i=1; i<=m; i++)
|
---|
| 977 | {
|
---|
| 978 | for(j=1; j<=qcolumns; j++)
|
---|
[2154] | 979 | {
|
---|
[2430] | 980 | if( i==j )
|
---|
| 981 | {
|
---|
| 982 | q[i,j] = 1;
|
---|
| 983 | }
|
---|
| 984 | else
|
---|
| 985 | {
|
---|
| 986 | q[i,j] = 0;
|
---|
| 987 | }
|
---|
[2154] | 988 | }
|
---|
| 989 | }
|
---|
[2430] | 990 | if( m>=n )
|
---|
[2154] | 991 | {
|
---|
[2430] | 992 | for(i=Math.Min(n, qcolumns); i>=1; i--)
|
---|
[2154] | 993 | {
|
---|
[2430] | 994 | vm = m-i+1;
|
---|
| 995 | i1_ = (i) - (1);
|
---|
| 996 | for(i_=1; i_<=vm;i_++)
|
---|
| 997 | {
|
---|
| 998 | v[i_] = qp[i_+i1_,i];
|
---|
| 999 | }
|
---|
| 1000 | v[1] = 1;
|
---|
| 1001 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i, m, 1, qcolumns, ref work);
|
---|
[2154] | 1002 | }
|
---|
| 1003 | }
|
---|
[2430] | 1004 | else
|
---|
[2154] | 1005 | {
|
---|
[2430] | 1006 | for(i=Math.Min(m-1, qcolumns-1); i>=1; i--)
|
---|
[2154] | 1007 | {
|
---|
[2430] | 1008 | vm = m-i;
|
---|
| 1009 | ip1 = i+1;
|
---|
| 1010 | i1_ = (ip1) - (1);
|
---|
| 1011 | for(i_=1; i_<=vm;i_++)
|
---|
| 1012 | {
|
---|
| 1013 | v[i_] = qp[i_+i1_,i];
|
---|
| 1014 | }
|
---|
| 1015 | v[1] = 1;
|
---|
| 1016 | reflections.applyreflectionfromtheleft(ref q, tauq[i], ref v, i+1, m, 1, qcolumns, ref work);
|
---|
[2154] | 1017 | }
|
---|
| 1018 | }
|
---|
| 1019 | }
|
---|
| 1020 |
|
---|
| 1021 |
|
---|
[2430] | 1022 | /*************************************************************************
|
---|
| 1023 | Obsolete 1-based subroutine.
|
---|
| 1024 | See RMatrixBDMultiplyByQ for 0-based replacement.
|
---|
| 1025 | *************************************************************************/
|
---|
| 1026 | public static void multiplybyqfrombidiagonal(ref double[,] qp,
|
---|
| 1027 | int m,
|
---|
| 1028 | int n,
|
---|
| 1029 | ref double[] tauq,
|
---|
| 1030 | ref double[,] z,
|
---|
| 1031 | int zrows,
|
---|
| 1032 | int zcolumns,
|
---|
| 1033 | bool fromtheright,
|
---|
| 1034 | bool dotranspose)
|
---|
| 1035 | {
|
---|
| 1036 | int i = 0;
|
---|
| 1037 | int ip1 = 0;
|
---|
| 1038 | int i1 = 0;
|
---|
| 1039 | int i2 = 0;
|
---|
| 1040 | int istep = 0;
|
---|
| 1041 | double[] v = new double[0];
|
---|
| 1042 | double[] work = new double[0];
|
---|
| 1043 | int vm = 0;
|
---|
| 1044 | int mx = 0;
|
---|
| 1045 | int i_ = 0;
|
---|
| 1046 | int i1_ = 0;
|
---|
[2154] | 1047 |
|
---|
[2430] | 1048 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
[2154] | 1049 | {
|
---|
[2430] | 1050 | return;
|
---|
[2154] | 1051 | }
|
---|
[2430] | 1052 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==m | !fromtheright & zrows==m, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
[2154] | 1053 |
|
---|
| 1054 | //
|
---|
[2430] | 1055 | // init
|
---|
[2154] | 1056 | //
|
---|
[2430] | 1057 | mx = Math.Max(m, n);
|
---|
| 1058 | mx = Math.Max(mx, zrows);
|
---|
| 1059 | mx = Math.Max(mx, zcolumns);
|
---|
| 1060 | v = new double[mx+1];
|
---|
| 1061 | work = new double[mx+1];
|
---|
| 1062 | if( m>=n )
|
---|
[2154] | 1063 | {
|
---|
[2430] | 1064 |
|
---|
| 1065 | //
|
---|
| 1066 | // setup
|
---|
| 1067 | //
|
---|
[2154] | 1068 | if( fromtheright )
|
---|
| 1069 | {
|
---|
[2430] | 1070 | i1 = 1;
|
---|
| 1071 | i2 = n;
|
---|
| 1072 | istep = +1;
|
---|
[2154] | 1073 | }
|
---|
| 1074 | else
|
---|
| 1075 | {
|
---|
[2430] | 1076 | i1 = n;
|
---|
| 1077 | i2 = 1;
|
---|
| 1078 | istep = -1;
|
---|
[2154] | 1079 | }
|
---|
[2430] | 1080 | if( dotranspose )
|
---|
| 1081 | {
|
---|
| 1082 | i = i1;
|
---|
| 1083 | i1 = i2;
|
---|
| 1084 | i2 = i;
|
---|
| 1085 | istep = -istep;
|
---|
| 1086 | }
|
---|
| 1087 |
|
---|
| 1088 | //
|
---|
| 1089 | // Process
|
---|
| 1090 | //
|
---|
[2154] | 1091 | i = i1;
|
---|
| 1092 | do
|
---|
| 1093 | {
|
---|
[2430] | 1094 | vm = m-i+1;
|
---|
| 1095 | i1_ = (i) - (1);
|
---|
[2154] | 1096 | for(i_=1; i_<=vm;i_++)
|
---|
| 1097 | {
|
---|
| 1098 | v[i_] = qp[i_+i1_,i];
|
---|
| 1099 | }
|
---|
| 1100 | v[1] = 1;
|
---|
| 1101 | if( fromtheright )
|
---|
| 1102 | {
|
---|
[2430] | 1103 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i, m, ref work);
|
---|
[2154] | 1104 | }
|
---|
| 1105 | else
|
---|
| 1106 | {
|
---|
[2430] | 1107 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i, m, 1, zcolumns, ref work);
|
---|
[2154] | 1108 | }
|
---|
| 1109 | i = i+istep;
|
---|
| 1110 | }
|
---|
| 1111 | while( i!=i2+istep );
|
---|
| 1112 | }
|
---|
[2430] | 1113 | else
|
---|
[2154] | 1114 | {
|
---|
[2430] | 1115 |
|
---|
| 1116 | //
|
---|
| 1117 | // setup
|
---|
| 1118 | //
|
---|
| 1119 | if( fromtheright )
|
---|
[2154] | 1120 | {
|
---|
[2430] | 1121 | i1 = 1;
|
---|
| 1122 | i2 = m-1;
|
---|
| 1123 | istep = +1;
|
---|
[2154] | 1124 | }
|
---|
| 1125 | else
|
---|
| 1126 | {
|
---|
[2430] | 1127 | i1 = m-1;
|
---|
| 1128 | i2 = 1;
|
---|
| 1129 | istep = -1;
|
---|
[2154] | 1130 | }
|
---|
[2430] | 1131 | if( dotranspose )
|
---|
[2154] | 1132 | {
|
---|
[2430] | 1133 | i = i1;
|
---|
| 1134 | i1 = i2;
|
---|
| 1135 | i2 = i;
|
---|
| 1136 | istep = -istep;
|
---|
[2154] | 1137 | }
|
---|
[2430] | 1138 |
|
---|
| 1139 | //
|
---|
| 1140 | // Process
|
---|
| 1141 | //
|
---|
| 1142 | if( m-1>0 )
|
---|
[2154] | 1143 | {
|
---|
[2430] | 1144 | i = i1;
|
---|
| 1145 | do
|
---|
| 1146 | {
|
---|
| 1147 | vm = m-i;
|
---|
| 1148 | ip1 = i+1;
|
---|
| 1149 | i1_ = (ip1) - (1);
|
---|
| 1150 | for(i_=1; i_<=vm;i_++)
|
---|
| 1151 | {
|
---|
| 1152 | v[i_] = qp[i_+i1_,i];
|
---|
| 1153 | }
|
---|
| 1154 | v[1] = 1;
|
---|
| 1155 | if( fromtheright )
|
---|
| 1156 | {
|
---|
| 1157 | reflections.applyreflectionfromtheright(ref z, tauq[i], ref v, 1, zrows, i+1, m, ref work);
|
---|
| 1158 | }
|
---|
| 1159 | else
|
---|
| 1160 | {
|
---|
| 1161 | reflections.applyreflectionfromtheleft(ref z, tauq[i], ref v, i+1, m, 1, zcolumns, ref work);
|
---|
| 1162 | }
|
---|
| 1163 | i = i+istep;
|
---|
| 1164 | }
|
---|
| 1165 | while( i!=i2+istep );
|
---|
[2154] | 1166 | }
|
---|
| 1167 | }
|
---|
| 1168 | }
|
---|
| 1169 |
|
---|
| 1170 |
|
---|
[2430] | 1171 | /*************************************************************************
|
---|
| 1172 | Obsolete 1-based subroutine.
|
---|
| 1173 | See RMatrixBDUnpackPT for 0-based replacement.
|
---|
| 1174 | *************************************************************************/
|
---|
| 1175 | public static void unpackptfrombidiagonal(ref double[,] qp,
|
---|
| 1176 | int m,
|
---|
| 1177 | int n,
|
---|
| 1178 | ref double[] taup,
|
---|
| 1179 | int ptrows,
|
---|
| 1180 | ref double[,] pt)
|
---|
| 1181 | {
|
---|
| 1182 | int i = 0;
|
---|
| 1183 | int j = 0;
|
---|
| 1184 | int ip1 = 0;
|
---|
| 1185 | double[] v = new double[0];
|
---|
| 1186 | double[] work = new double[0];
|
---|
| 1187 | int vm = 0;
|
---|
| 1188 | int i_ = 0;
|
---|
| 1189 | int i1_ = 0;
|
---|
[2154] | 1190 |
|
---|
[2430] | 1191 | System.Diagnostics.Debug.Assert(ptrows<=n, "UnpackPTFromBidiagonal: PTRows>N!");
|
---|
| 1192 | if( m==0 | n==0 | ptrows==0 )
|
---|
| 1193 | {
|
---|
| 1194 | return;
|
---|
| 1195 | }
|
---|
[2154] | 1196 |
|
---|
| 1197 | //
|
---|
[2430] | 1198 | // init
|
---|
[2154] | 1199 | //
|
---|
[2430] | 1200 | pt = new double[ptrows+1, n+1];
|
---|
| 1201 | v = new double[n+1];
|
---|
| 1202 | work = new double[ptrows+1];
|
---|
[2154] | 1203 |
|
---|
| 1204 | //
|
---|
[2430] | 1205 | // prepare PT
|
---|
[2154] | 1206 | //
|
---|
[2430] | 1207 | for(i=1; i<=ptrows; i++)
|
---|
[2154] | 1208 | {
|
---|
[2430] | 1209 | for(j=1; j<=n; j++)
|
---|
[2154] | 1210 | {
|
---|
[2430] | 1211 | if( i==j )
|
---|
| 1212 | {
|
---|
| 1213 | pt[i,j] = 1;
|
---|
| 1214 | }
|
---|
| 1215 | else
|
---|
| 1216 | {
|
---|
| 1217 | pt[i,j] = 0;
|
---|
| 1218 | }
|
---|
| 1219 | }
|
---|
| 1220 | }
|
---|
| 1221 | if( m>=n )
|
---|
| 1222 | {
|
---|
| 1223 | for(i=Math.Min(n-1, ptrows-1); i>=1; i--)
|
---|
| 1224 | {
|
---|
[2154] | 1225 | vm = n-i;
|
---|
| 1226 | ip1 = i+1;
|
---|
| 1227 | i1_ = (ip1) - (1);
|
---|
| 1228 | for(i_=1; i_<=vm;i_++)
|
---|
| 1229 | {
|
---|
| 1230 | v[i_] = qp[i,i_+i1_];
|
---|
| 1231 | }
|
---|
| 1232 | v[1] = 1;
|
---|
[2430] | 1233 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i+1, n, ref work);
|
---|
| 1234 | }
|
---|
| 1235 | }
|
---|
| 1236 | else
|
---|
| 1237 | {
|
---|
| 1238 | for(i=Math.Min(m, ptrows); i>=1; i--)
|
---|
| 1239 | {
|
---|
| 1240 | vm = n-i+1;
|
---|
| 1241 | i1_ = (i) - (1);
|
---|
| 1242 | for(i_=1; i_<=vm;i_++)
|
---|
[2154] | 1243 | {
|
---|
[2430] | 1244 | v[i_] = qp[i,i_+i1_];
|
---|
[2154] | 1245 | }
|
---|
[2430] | 1246 | v[1] = 1;
|
---|
| 1247 | reflections.applyreflectionfromtheright(ref pt, taup[i], ref v, 1, ptrows, i, n, ref work);
|
---|
[2154] | 1248 | }
|
---|
| 1249 | }
|
---|
| 1250 | }
|
---|
[2430] | 1251 |
|
---|
| 1252 |
|
---|
| 1253 | /*************************************************************************
|
---|
| 1254 | Obsolete 1-based subroutine.
|
---|
| 1255 | See RMatrixBDMultiplyByP for 0-based replacement.
|
---|
| 1256 | *************************************************************************/
|
---|
| 1257 | public static void multiplybypfrombidiagonal(ref double[,] qp,
|
---|
| 1258 | int m,
|
---|
| 1259 | int n,
|
---|
| 1260 | ref double[] taup,
|
---|
| 1261 | ref double[,] z,
|
---|
| 1262 | int zrows,
|
---|
| 1263 | int zcolumns,
|
---|
| 1264 | bool fromtheright,
|
---|
| 1265 | bool dotranspose)
|
---|
[2154] | 1266 | {
|
---|
[2430] | 1267 | int i = 0;
|
---|
| 1268 | int ip1 = 0;
|
---|
| 1269 | double[] v = new double[0];
|
---|
| 1270 | double[] work = new double[0];
|
---|
| 1271 | int vm = 0;
|
---|
| 1272 | int mx = 0;
|
---|
| 1273 | int i1 = 0;
|
---|
| 1274 | int i2 = 0;
|
---|
| 1275 | int istep = 0;
|
---|
| 1276 | int i_ = 0;
|
---|
| 1277 | int i1_ = 0;
|
---|
| 1278 |
|
---|
| 1279 | if( m<=0 | n<=0 | zrows<=0 | zcolumns<=0 )
|
---|
[2154] | 1280 | {
|
---|
[2430] | 1281 | return;
|
---|
[2154] | 1282 | }
|
---|
[2430] | 1283 | System.Diagnostics.Debug.Assert(fromtheright & zcolumns==n | !fromtheright & zrows==n, "MultiplyByQFromBidiagonal: incorrect Z size!");
|
---|
[2154] | 1284 |
|
---|
| 1285 | //
|
---|
[2430] | 1286 | // init
|
---|
[2154] | 1287 | //
|
---|
[2430] | 1288 | mx = Math.Max(m, n);
|
---|
| 1289 | mx = Math.Max(mx, zrows);
|
---|
| 1290 | mx = Math.Max(mx, zcolumns);
|
---|
| 1291 | v = new double[mx+1];
|
---|
| 1292 | work = new double[mx+1];
|
---|
| 1293 | v = new double[mx+1];
|
---|
| 1294 | work = new double[mx+1];
|
---|
| 1295 | if( m>=n )
|
---|
[2154] | 1296 | {
|
---|
[2430] | 1297 |
|
---|
| 1298 | //
|
---|
| 1299 | // setup
|
---|
| 1300 | //
|
---|
| 1301 | if( fromtheright )
|
---|
[2154] | 1302 | {
|
---|
[2430] | 1303 | i1 = n-1;
|
---|
| 1304 | i2 = 1;
|
---|
| 1305 | istep = -1;
|
---|
[2154] | 1306 | }
|
---|
[2430] | 1307 | else
|
---|
| 1308 | {
|
---|
| 1309 | i1 = 1;
|
---|
| 1310 | i2 = n-1;
|
---|
| 1311 | istep = +1;
|
---|
| 1312 | }
|
---|
| 1313 | if( !dotranspose )
|
---|
| 1314 | {
|
---|
| 1315 | i = i1;
|
---|
| 1316 | i1 = i2;
|
---|
| 1317 | i2 = i;
|
---|
| 1318 | istep = -istep;
|
---|
| 1319 | }
|
---|
| 1320 |
|
---|
| 1321 | //
|
---|
| 1322 | // Process
|
---|
| 1323 | //
|
---|
| 1324 | if( n-1>0 )
|
---|
| 1325 | {
|
---|
| 1326 | i = i1;
|
---|
| 1327 | do
|
---|
| 1328 | {
|
---|
| 1329 | vm = n-i;
|
---|
| 1330 | ip1 = i+1;
|
---|
| 1331 | i1_ = (ip1) - (1);
|
---|
| 1332 | for(i_=1; i_<=vm;i_++)
|
---|
| 1333 | {
|
---|
| 1334 | v[i_] = qp[i,i_+i1_];
|
---|
| 1335 | }
|
---|
| 1336 | v[1] = 1;
|
---|
| 1337 | if( fromtheright )
|
---|
| 1338 | {
|
---|
| 1339 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i+1, n, ref work);
|
---|
| 1340 | }
|
---|
| 1341 | else
|
---|
| 1342 | {
|
---|
| 1343 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i+1, n, 1, zcolumns, ref work);
|
---|
| 1344 | }
|
---|
| 1345 | i = i+istep;
|
---|
| 1346 | }
|
---|
| 1347 | while( i!=i2+istep );
|
---|
| 1348 | }
|
---|
| 1349 | }
|
---|
| 1350 | else
|
---|
| 1351 | {
|
---|
| 1352 |
|
---|
| 1353 | //
|
---|
| 1354 | // setup
|
---|
| 1355 | //
|
---|
[2154] | 1356 | if( fromtheright )
|
---|
| 1357 | {
|
---|
[2430] | 1358 | i1 = m;
|
---|
| 1359 | i2 = 1;
|
---|
| 1360 | istep = -1;
|
---|
[2154] | 1361 | }
|
---|
| 1362 | else
|
---|
| 1363 | {
|
---|
[2430] | 1364 | i1 = 1;
|
---|
| 1365 | i2 = m;
|
---|
| 1366 | istep = +1;
|
---|
[2154] | 1367 | }
|
---|
[2430] | 1368 | if( !dotranspose )
|
---|
| 1369 | {
|
---|
| 1370 | i = i1;
|
---|
| 1371 | i1 = i2;
|
---|
| 1372 | i2 = i;
|
---|
| 1373 | istep = -istep;
|
---|
| 1374 | }
|
---|
| 1375 |
|
---|
| 1376 | //
|
---|
| 1377 | // Process
|
---|
| 1378 | //
|
---|
| 1379 | i = i1;
|
---|
| 1380 | do
|
---|
| 1381 | {
|
---|
| 1382 | vm = n-i+1;
|
---|
| 1383 | i1_ = (i) - (1);
|
---|
| 1384 | for(i_=1; i_<=vm;i_++)
|
---|
| 1385 | {
|
---|
| 1386 | v[i_] = qp[i,i_+i1_];
|
---|
| 1387 | }
|
---|
| 1388 | v[1] = 1;
|
---|
| 1389 | if( fromtheright )
|
---|
| 1390 | {
|
---|
| 1391 | reflections.applyreflectionfromtheright(ref z, taup[i], ref v, 1, zrows, i, n, ref work);
|
---|
| 1392 | }
|
---|
| 1393 | else
|
---|
| 1394 | {
|
---|
| 1395 | reflections.applyreflectionfromtheleft(ref z, taup[i], ref v, i, n, 1, zcolumns, ref work);
|
---|
| 1396 | }
|
---|
| 1397 | i = i+istep;
|
---|
| 1398 | }
|
---|
| 1399 | while( i!=i2+istep );
|
---|
[2154] | 1400 | }
|
---|
| 1401 | }
|
---|
| 1402 |
|
---|
| 1403 |
|
---|
[2430] | 1404 | /*************************************************************************
|
---|
| 1405 | Obsolete 1-based subroutine.
|
---|
| 1406 | See RMatrixBDUnpackDiagonals for 0-based replacement.
|
---|
| 1407 | *************************************************************************/
|
---|
| 1408 | public static void unpackdiagonalsfrombidiagonal(ref double[,] b,
|
---|
| 1409 | int m,
|
---|
| 1410 | int n,
|
---|
| 1411 | ref bool isupper,
|
---|
| 1412 | ref double[] d,
|
---|
| 1413 | ref double[] e)
|
---|
| 1414 | {
|
---|
| 1415 | int i = 0;
|
---|
[2154] | 1416 |
|
---|
[2430] | 1417 | isupper = m>=n;
|
---|
| 1418 | if( m==0 | n==0 )
|
---|
[2154] | 1419 | {
|
---|
[2430] | 1420 | return;
|
---|
[2154] | 1421 | }
|
---|
[2430] | 1422 | if( isupper )
|
---|
[2154] | 1423 | {
|
---|
[2430] | 1424 | d = new double[n+1];
|
---|
| 1425 | e = new double[n+1];
|
---|
| 1426 | for(i=1; i<=n-1; i++)
|
---|
| 1427 | {
|
---|
| 1428 | d[i] = b[i,i];
|
---|
| 1429 | e[i] = b[i,i+1];
|
---|
| 1430 | }
|
---|
| 1431 | d[n] = b[n,n];
|
---|
[2154] | 1432 | }
|
---|
[2430] | 1433 | else
|
---|
| 1434 | {
|
---|
| 1435 | d = new double[m+1];
|
---|
| 1436 | e = new double[m+1];
|
---|
| 1437 | for(i=1; i<=m-1; i++)
|
---|
| 1438 | {
|
---|
| 1439 | d[i] = b[i,i];
|
---|
| 1440 | e[i] = b[i+1,i];
|
---|
| 1441 | }
|
---|
| 1442 | d[m] = b[m,m];
|
---|
| 1443 | }
|
---|
[2154] | 1444 | }
|
---|
| 1445 | }
|
---|
| 1446 | }
|
---|