1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.IO;
|
---|
24 | using System.Linq;
|
---|
25 | using HEAL.Attic;
|
---|
26 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
30 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
31 | using HeuristicLab.Selection;
|
---|
32 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Tests {
|
---|
35 | [TestClass]
|
---|
36 | public class ShapeConstrainedRegressionSampleTest {
|
---|
37 | private const string SampleFileName = "GP_Shape_Constrained_Regression";
|
---|
38 | private static readonly ProtoBufSerializer serializer = new ProtoBufSerializer();
|
---|
39 |
|
---|
40 | [TestMethod]
|
---|
41 | [TestCategory("Samples.Execute")]
|
---|
42 | [TestProperty("Time", "long")]
|
---|
43 | public void RunShapeConstrainedRegressionSampleTest() {
|
---|
44 | var ga = CreateShapeConstrainedRegressionSample();
|
---|
45 | ga.SetSeedRandomly.Value = false;
|
---|
46 | SamplesUtils.RunAlgorithm(ga);
|
---|
47 |
|
---|
48 | if (Environment.Is64BitProcess) {
|
---|
49 | Assert.AreEqual(0.035536903914644882, SamplesUtils.GetDoubleResult(ga, "BestQuality"), 1E-8);
|
---|
50 | Assert.AreEqual(26.707437555596698, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8);
|
---|
51 | Assert.AreEqual(3294.1754151628993, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8);
|
---|
52 | Assert.AreEqual(150200, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
|
---|
53 | } else {
|
---|
54 | Assert.AreEqual(0.317642788600248, SamplesUtils.GetDoubleResult(ga, "BestQuality"), 1E-8);
|
---|
55 | Assert.AreEqual(40.9805778810063, SamplesUtils.GetDoubleResult(ga, "CurrentAverageQuality"), 1E-8);
|
---|
56 | Assert.AreEqual(3359.91748220025, SamplesUtils.GetDoubleResult(ga, "CurrentWorstQuality"), 1E-8);
|
---|
57 | Assert.AreEqual(150200, SamplesUtils.GetIntResult(ga, "EvaluatedSolutions"));
|
---|
58 | }
|
---|
59 | }
|
---|
60 |
|
---|
61 | [TestMethod]
|
---|
62 | [TestCategory("Samples.Create")]
|
---|
63 | [TestProperty("Time", "medium")]
|
---|
64 | public void CreateShapeConstrainedRegressionSampleTest() {
|
---|
65 | var ga = CreateShapeConstrainedRegressionSample();
|
---|
66 | string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
|
---|
67 | serializer.Serialize(ga, path);
|
---|
68 | }
|
---|
69 |
|
---|
70 | public static GeneticAlgorithm CreateShapeConstrainedRegressionSample() {
|
---|
71 | var alg = new GeneticAlgorithm();
|
---|
72 | var provider = new FeynmanSmallInstanceProvider(0);
|
---|
73 | var instance = provider.GetDataDescriptors().Where(x => x.Name.Contains("Radiated gravitational wave power: -32/5*G**4/c**5*(m1*m2)**2*(m1+m2)/r**5 | no noise")).Single();
|
---|
74 | var problem = new ShapeConstrainedRegressionSingleObjectiveProblem();
|
---|
75 | problem.Load(provider.LoadData(instance));
|
---|
76 | var problemData = (IShapeConstrainedRegressionProblemData)problem.ProblemData;
|
---|
77 | problemData.ShapeConstraints.Add(new ShapeConstraint(new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
78 | problemData.ShapeConstraints.Add(new ShapeConstraint("G", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
79 | problemData.ShapeConstraints.Add(new ShapeConstraint("c", 1, new Interval(0, double.PositiveInfinity), 1.0));
|
---|
80 | problemData.ShapeConstraints.Add(new ShapeConstraint("m1", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
81 | problemData.ShapeConstraints.Add(new ShapeConstraint("m2", 1, new Interval(double.NegativeInfinity, 0), 1.0));
|
---|
82 | problemData.ShapeConstraints.Add(new ShapeConstraint("r", 1, new Interval(0, double.PositiveInfinity), 1.0));
|
---|
83 |
|
---|
84 | problemData.VariableRanges.SetInterval("G", new Interval(1, 2));
|
---|
85 | problemData.VariableRanges.SetInterval("c", new Interval(1, 2));
|
---|
86 | problemData.VariableRanges.SetInterval("m1", new Interval(1, 5));
|
---|
87 | problemData.VariableRanges.SetInterval("m2", new Interval(1, 5));
|
---|
88 | problemData.VariableRanges.SetInterval("r", new Interval(1, 2));
|
---|
89 | problem.ProblemData = problemData;
|
---|
90 |
|
---|
91 |
|
---|
92 | #region Algorithm Configuration
|
---|
93 | alg.Name = "Genetic Programming - Shape-constrained Regression";
|
---|
94 | alg.Description = "A standard genetic programming algorithm to solve a shape constrained regression problem (Radiated gravitational wave power - Feynman instance)";
|
---|
95 | alg.Problem = problem;
|
---|
96 |
|
---|
97 | SamplesUtils.ConfigureGeneticAlgorithmParameters<TournamentSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>
|
---|
98 | (alg, popSize: 500, elites: 1, maxGens: 300, mutationRate: 0.15, tournGroupSize: 3);
|
---|
99 |
|
---|
100 | alg.Seed.Value = 0;
|
---|
101 | #endregion
|
---|
102 |
|
---|
103 | alg.Engine = new ParallelEngine.ParallelEngine();
|
---|
104 |
|
---|
105 | return alg;
|
---|
106 | }
|
---|
107 | }
|
---|
108 | }
|
---|