1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Optimization.Operators;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin;
|
---|
33 | using HeuristicLab.Problems.VehicleRouting.Interfaces;
|
---|
34 | using HeuristicLab.Problems.VehicleRouting.ProblemInstances;
|
---|
35 | using HeuristicLab.Problems.VehicleRouting.Variants;
|
---|
36 |
|
---|
37 | namespace HeuristicLab.Problems.VehicleRouting {
|
---|
38 | /// <summary>
|
---|
39 | /// An operator which relinks paths between VRP solutions.
|
---|
40 | /// </summary>
|
---|
41 | [Item("VRPPathRelinker", "An operator which relinks paths between VRP solutions.")]
|
---|
42 | [StorableClass]
|
---|
43 | public sealed class VRPPathRelinker : SingleObjectivePathRelinker, IGeneralVRPOperator, IStochasticOperator {
|
---|
44 | #region Parameter properties
|
---|
45 | public IValueParameter<IntValue> IterationsParameter {
|
---|
46 | get { return (IValueParameter<IntValue>)Parameters["Iterations"]; }
|
---|
47 | }
|
---|
48 | public ILookupParameter<IVRPProblemInstance> ProblemInstanceParameter {
|
---|
49 | get { return (ILookupParameter<IVRPProblemInstance>)Parameters["ProblemInstance"]; }
|
---|
50 | }
|
---|
51 | public ILookupParameter<IRandom> RandomParameter {
|
---|
52 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
53 | }
|
---|
54 | public IValueParameter<IntValue> SampleSizeParameter {
|
---|
55 | get { return (IValueParameter<IntValue>)Parameters["SampleSize"]; }
|
---|
56 | }
|
---|
57 | #endregion
|
---|
58 |
|
---|
59 | [StorableConstructor]
|
---|
60 | private VRPPathRelinker(bool deserializing) : base(deserializing) { }
|
---|
61 | private VRPPathRelinker(VRPPathRelinker original, Cloner cloner) : base(original, cloner) { }
|
---|
62 | public VRPPathRelinker()
|
---|
63 | : base() {
|
---|
64 | Parameters.Add(new ValueParameter<IntValue>("Iterations", "The number of iterations the operator should perform.", new IntValue(50)));
|
---|
65 | Parameters.Add(new LookupParameter<IVRPProblemInstance>("ProblemInstance", "The VRP problem instance"));
|
---|
66 | Parameters.Add(new LookupParameter<IRandom>("Random", "The pseudo random number generator which should be used for stochastic manipulation operators."));
|
---|
67 | Parameters.Add(new ValueParameter<IntValue>("SampleSize", "The number of moves that should be executed.", new IntValue(10)));
|
---|
68 | }
|
---|
69 |
|
---|
70 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
71 | return new VRPPathRelinker(this, cloner);
|
---|
72 | }
|
---|
73 |
|
---|
74 | public static ItemArray<IItem> Apply(PotvinEncoding initiator, PotvinEncoding guide, PercentValue n, int sampleSize, int iterations, IRandom rand, IVRPProblemInstance problemInstance) {
|
---|
75 | if (initiator == null || guide == null)
|
---|
76 | throw new ArgumentException("Cannot relink path because one of the provided solutions or both are null.");
|
---|
77 |
|
---|
78 | double sigma = 1.5;
|
---|
79 | double minPenalty = 0.001;
|
---|
80 | double maxPenalty = 1000000000;
|
---|
81 |
|
---|
82 | var originalOverloadPenalty = new DoubleValue();
|
---|
83 | if (problemInstance is IHomogenousCapacitatedProblemInstance)
|
---|
84 | originalOverloadPenalty.Value = (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value;
|
---|
85 | var originalTardinessPenalty = new DoubleValue();
|
---|
86 | if (problemInstance is ITimeWindowedProblemInstance)
|
---|
87 | originalTardinessPenalty.Value = (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value;
|
---|
88 |
|
---|
89 | PotvinEncoding current = MatchTours(initiator, guide, problemInstance);
|
---|
90 | double currentSimilarity = VRPSimilarityCalculator.CalculateSimilarity(current, guide);
|
---|
91 |
|
---|
92 | IList<PotvinEncoding> solutions = new List<PotvinEncoding>();
|
---|
93 | int i = 0;
|
---|
94 | while (i < iterations && !currentSimilarity.IsAlmost(1.0)) {
|
---|
95 | var currentEval = problemInstance.Evaluate(current);
|
---|
96 | currentSimilarity = VRPSimilarityCalculator.CalculateSimilarity(current, guide);
|
---|
97 |
|
---|
98 | if (currentSimilarity < 1.0) {
|
---|
99 | for (int sample = 0; sample < sampleSize; sample++) {
|
---|
100 | var next = current.Clone() as PotvinEncoding;
|
---|
101 |
|
---|
102 | int neighborhood = rand.Next(3);
|
---|
103 | switch (neighborhood) {
|
---|
104 | case 0: next = RouteBasedXOver(next, guide, rand,
|
---|
105 | problemInstance);
|
---|
106 | break;
|
---|
107 | case 1: next = SequenceBasedXOver(next, guide, rand,
|
---|
108 | problemInstance);
|
---|
109 | break;
|
---|
110 | case 2: GuidedRelocateMove(next, guide, rand);
|
---|
111 | break;
|
---|
112 | }
|
---|
113 |
|
---|
114 | next = MatchTours(next, guide, problemInstance);
|
---|
115 |
|
---|
116 | var nextEval = problemInstance.Evaluate(next);
|
---|
117 | if ((nextEval.Quality < currentEval.Quality)) {
|
---|
118 | current = next;
|
---|
119 | solutions.Add(current);
|
---|
120 | break;
|
---|
121 | }
|
---|
122 | }
|
---|
123 |
|
---|
124 | if (problemInstance is IHomogenousCapacitatedProblemInstance) {
|
---|
125 | if (((CVRPEvaluation)currentEval).Overload > 0) {
|
---|
126 | (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value =
|
---|
127 | Math.Min(maxPenalty,
|
---|
128 | (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value * sigma);
|
---|
129 | } else {
|
---|
130 | (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value =
|
---|
131 | Math.Max(minPenalty,
|
---|
132 | (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value * sigma);
|
---|
133 | }
|
---|
134 | }
|
---|
135 |
|
---|
136 |
|
---|
137 | if (problemInstance is ITimeWindowedProblemInstance) {
|
---|
138 | if (((CVRPTWEvaluation)currentEval).Tardiness > 0) {
|
---|
139 | (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value =
|
---|
140 | Math.Min(maxPenalty,
|
---|
141 | (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value * sigma);
|
---|
142 | } else {
|
---|
143 | (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value =
|
---|
144 | Math.Max(minPenalty,
|
---|
145 | (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value / sigma);
|
---|
146 | }
|
---|
147 | }
|
---|
148 |
|
---|
149 | i++;
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | if (problemInstance is IHomogenousCapacitatedProblemInstance)
|
---|
154 | (problemInstance as IHomogenousCapacitatedProblemInstance).OverloadPenalty.Value = originalOverloadPenalty.Value;
|
---|
155 | if (problemInstance is ITimeWindowedProblemInstance)
|
---|
156 | (problemInstance as ITimeWindowedProblemInstance).TardinessPenalty.Value = originalTardinessPenalty.Value;
|
---|
157 |
|
---|
158 | return new ItemArray<IItem>(ChooseSelection(solutions, n));
|
---|
159 | }
|
---|
160 |
|
---|
161 | private static IList<IItem> ChooseSelection(IList<PotvinEncoding> solutions, PercentValue n) {
|
---|
162 | IList<IItem> selection = new List<IItem>();
|
---|
163 | if (solutions.Count > 0) {
|
---|
164 | int noSol = (int)(solutions.Count * n.Value);
|
---|
165 | if (noSol <= 0) noSol++;
|
---|
166 | double stepSize = (double)solutions.Count / (double)noSol;
|
---|
167 | for (int i = 0; i < noSol; i++)
|
---|
168 | selection.Add(solutions.ElementAt((int)((i + 1) * stepSize - stepSize * 0.5)));
|
---|
169 | }
|
---|
170 |
|
---|
171 | return selection;
|
---|
172 | }
|
---|
173 |
|
---|
174 | protected override ItemArray<IItem> Relink(ItemArray<IItem> parents, PercentValue n) {
|
---|
175 | if (parents.Length != 2)
|
---|
176 | throw new ArgumentException("The number of parents is not equal to 2.");
|
---|
177 |
|
---|
178 | if (!(parents[0] is PotvinEncoding))
|
---|
179 | parents[0] = PotvinEncoding.ConvertFrom(parents[0] as IVRPEncoding, ProblemInstanceParameter.ActualValue);
|
---|
180 | if (!(parents[1] is PotvinEncoding))
|
---|
181 | parents[1] = PotvinEncoding.ConvertFrom(parents[1] as IVRPEncoding, ProblemInstanceParameter.ActualValue);
|
---|
182 |
|
---|
183 | return Apply(parents[0] as PotvinEncoding, parents[1] as PotvinEncoding, n,
|
---|
184 | SampleSizeParameter.Value.Value, IterationsParameter.Value.Value, RandomParameter.ActualValue, ProblemInstanceParameter.ActualValue);
|
---|
185 | }
|
---|
186 |
|
---|
187 | private static int MatchingCities(Tour tour1, Tour tour2) {
|
---|
188 | return tour1.Stops.Intersect(tour2.Stops).Count();
|
---|
189 | }
|
---|
190 |
|
---|
191 | private static PotvinEncoding MatchTours(PotvinEncoding initiator, PotvinEncoding guide, IVRPProblemInstance problemInstance) {
|
---|
192 | var result = new PotvinEncoding(problemInstance);
|
---|
193 |
|
---|
194 | var used = new List<bool>();
|
---|
195 | for (int i = 0; i < initiator.Tours.Count; i++) {
|
---|
196 | used.Add(false);
|
---|
197 | }
|
---|
198 |
|
---|
199 | for (int i = 0; i < guide.Tours.Count; i++) {
|
---|
200 | int bestMatch = -1;
|
---|
201 | int bestTour = -1;
|
---|
202 |
|
---|
203 | for (int j = 0; j < initiator.Tours.Count; j++) {
|
---|
204 | if (!used[j]) {
|
---|
205 | int match = MatchingCities(guide.Tours[i], initiator.Tours[j]);
|
---|
206 | if (match > bestMatch) {
|
---|
207 | bestMatch = match;
|
---|
208 | bestTour = j;
|
---|
209 | }
|
---|
210 | }
|
---|
211 | }
|
---|
212 |
|
---|
213 | if (bestTour != -1) {
|
---|
214 | result.Tours.Add(initiator.Tours[bestTour]);
|
---|
215 | used[bestTour] = true;
|
---|
216 | }
|
---|
217 | }
|
---|
218 |
|
---|
219 | for (int i = 0; i < initiator.Tours.Count; i++) {
|
---|
220 | if (!used[i])
|
---|
221 | result.Tours.Add(initiator.Tours[i]);
|
---|
222 | }
|
---|
223 |
|
---|
224 | return result;
|
---|
225 | }
|
---|
226 |
|
---|
227 | #region moves
|
---|
228 | public static PotvinEncoding RouteBasedXOver(PotvinEncoding initiator, PotvinEncoding guide, IRandom random, IVRPProblemInstance problemInstance) {
|
---|
229 | return PotvinRouteBasedCrossover.Apply(random, initiator, guide, problemInstance, false);
|
---|
230 | }
|
---|
231 |
|
---|
232 | public static PotvinEncoding SequenceBasedXOver(PotvinEncoding initiator, PotvinEncoding guide, IRandom random, IVRPProblemInstance problemInstance) {
|
---|
233 | return PotvinSequenceBasedCrossover.Apply(random, initiator, guide, problemInstance, false);
|
---|
234 | }
|
---|
235 |
|
---|
236 | public static void GuidedRelocateMove(PotvinEncoding initiator, PotvinEncoding guide, IRandom random) {
|
---|
237 | List<int> cities = new List<int>();
|
---|
238 | foreach (Tour tour in initiator.Tours) {
|
---|
239 | foreach (int city in tour.Stops) {
|
---|
240 | Tour guideTour = guide.Tours.First(t => t.Stops.Contains(city));
|
---|
241 | if (guide.Tours.IndexOf(guideTour) != initiator.Tours.IndexOf(tour)) {
|
---|
242 | cities.Add(city);
|
---|
243 | }
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 | if (cities.Count == 0) {
|
---|
248 | RelocateMove(initiator, random);
|
---|
249 | } else {
|
---|
250 | int city = cities[random.Next(cities.Count)];
|
---|
251 | Tour tour = initiator.Tours.First(t => t.Stops.Contains(city));
|
---|
252 | tour.Stops.Remove(city);
|
---|
253 |
|
---|
254 | Tour guideTour = guide.Tours.First(t => t.Stops.Contains(city));
|
---|
255 | int guideTourIndex = guide.Tours.IndexOf(guideTour);
|
---|
256 |
|
---|
257 | if (guideTourIndex < initiator.Tours.Count) {
|
---|
258 | Tour tour2 = initiator.Tours[guideTourIndex];
|
---|
259 |
|
---|
260 | int guideIndex = guideTour.Stops.IndexOf(city);
|
---|
261 | if (guideIndex == 0) {
|
---|
262 | tour2.Stops.Insert(0, city);
|
---|
263 | } else {
|
---|
264 | int predecessor = guideTour.Stops[guideIndex - 1];
|
---|
265 | int initIndex = tour2.Stops.IndexOf(predecessor);
|
---|
266 | if (initIndex != -1) {
|
---|
267 | tour2.Stops.Insert(initIndex + 1, city);
|
---|
268 | } else {
|
---|
269 | if (guideIndex == guideTour.Stops.Count - 1) {
|
---|
270 | tour2.Stops.Insert(tour2.Stops.Count, city);
|
---|
271 | } else {
|
---|
272 | int sucessor = guideTour.Stops[guideIndex + 1];
|
---|
273 | initIndex = tour2.Stops.IndexOf(sucessor);
|
---|
274 | if (initIndex != -1) {
|
---|
275 | tour2.Stops.Insert(initIndex, city);
|
---|
276 | } else {
|
---|
277 | tour2.Stops.Insert(random.Next(tour2.Stops.Count + 1), city);
|
---|
278 | }
|
---|
279 | }
|
---|
280 | }
|
---|
281 | }
|
---|
282 | } else {
|
---|
283 | Tour tour2 = new Tour();
|
---|
284 | tour2.Stops.Add(city);
|
---|
285 | initiator.Tours.Add(tour2);
|
---|
286 | }
|
---|
287 |
|
---|
288 | if (tour.Stops.Count == 0)
|
---|
289 | initiator.Tours.Remove(tour);
|
---|
290 | }
|
---|
291 | }
|
---|
292 |
|
---|
293 | public static void RelocateMove(PotvinEncoding individual, IRandom random) {
|
---|
294 | int cities = individual.Cities;
|
---|
295 | int city = 1 + random.Next(cities);
|
---|
296 | Tour originalTour = individual.Tours.Find(t => t.Stops.Contains(city));
|
---|
297 | //consider creating new route
|
---|
298 | individual.Tours.Add(new Tour());
|
---|
299 |
|
---|
300 | int position = 1 + random.Next(cities + individual.Tours.Count - 1);
|
---|
301 | if (position >= city) {
|
---|
302 | position++;
|
---|
303 | }
|
---|
304 |
|
---|
305 | int originalPosition = originalTour.Stops.IndexOf(city);
|
---|
306 | originalTour.Stops.RemoveAt(originalPosition);
|
---|
307 |
|
---|
308 | Tour insertionTour;
|
---|
309 | int insertionPosition;
|
---|
310 | if (position <= cities) {
|
---|
311 | insertionTour = individual.Tours.Find(t => t.Stops.Contains(position));
|
---|
312 | insertionPosition = insertionTour.Stops.IndexOf(position) + 1;
|
---|
313 | } else {
|
---|
314 | insertionTour = individual.Tours[position - cities - 1];
|
---|
315 | insertionPosition = 0;
|
---|
316 | }
|
---|
317 |
|
---|
318 | insertionTour.Stops.Insert(insertionPosition, city);
|
---|
319 |
|
---|
320 | individual.Tours.RemoveAll(t => t.Stops.Count == 0);
|
---|
321 | }
|
---|
322 | #endregion
|
---|
323 | }
|
---|
324 | } |
---|