[13939] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13939] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
[14110] | 24 | using System.Linq;
|
---|
[13939] | 25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 29 | public class VariableNetworkInstanceProvider : ArtificialRegressionInstanceProvider {
|
---|
| 30 | public override string Name {
|
---|
| 31 | get { return "Variable Network Instances"; }
|
---|
| 32 | }
|
---|
| 33 | public override string Description {
|
---|
[15194] | 34 | get { return "A set of regression benchmark instances for variable network analysis. The data for these instances are randomly generated as described in the reference publication."; }
|
---|
[13939] | 35 | }
|
---|
| 36 | public override Uri WebLink {
|
---|
| 37 | get { return new Uri("http://dev.heuristiclab.com"); }
|
---|
| 38 | }
|
---|
| 39 | public override string ReferencePublication {
|
---|
[15194] | 40 | get { return "G. Kronberger, B. Burlacu, M. Kommenda, S. Winkler, M. Affenzeller. Measures for the Evaluation and Comparison of Graphical Model Structures. to appear in Computer Aided Systems Theory - EUROCAST 2017, Springer 2018"; }
|
---|
[13939] | 41 | }
|
---|
[14229] | 42 | public int Seed { get; private set; }
|
---|
[13939] | 43 |
|
---|
[14228] | 44 | public VariableNetworkInstanceProvider() : this((int)DateTime.Now.Ticks) { }
|
---|
| 45 | public VariableNetworkInstanceProvider(int seed) : base() {
|
---|
| 46 | Seed = seed;
|
---|
| 47 | }
|
---|
| 48 |
|
---|
[13939] | 49 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
| 50 | var numVariables = new int[] { 10, 20, 50, 100 };
|
---|
[14630] | 51 | var noiseRatios = new double[] { 0, 0.01, 0.05, 0.1, 0.2 };
|
---|
[14228] | 52 | var rand = new MersenneTwister((uint)Seed); // use fixed seed for deterministic problem generation
|
---|
[14630] | 53 | var lr = (from size in numVariables
|
---|
| 54 | from noiseRatio in noiseRatios
|
---|
| 55 | select new LinearVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next())))
|
---|
| 56 | .Cast<IDataDescriptor>()
|
---|
| 57 | .ToList();
|
---|
| 58 | var gp = (from size in numVariables
|
---|
| 59 | from noiseRatio in noiseRatios
|
---|
| 60 | select new GaussianProcessVariableNetwork(size, noiseRatio, new MersenneTwister((uint)rand.Next())))
|
---|
| 61 | .Cast<IDataDescriptor>()
|
---|
| 62 | .ToList();
|
---|
| 63 | return lr.Concat(gp);
|
---|
[13939] | 64 | }
|
---|
| 65 |
|
---|
| 66 | public override IRegressionProblemData LoadData(IDataDescriptor descriptor) {
|
---|
| 67 | var varNetwork = descriptor as VariableNetwork;
|
---|
| 68 | if (varNetwork == null) throw new ArgumentException("VariableNetworkInstanceProvider expects an VariableNetwork data descriptor.");
|
---|
| 69 | // base call generates a regression problem data
|
---|
[14110] | 70 | var problemData = base.LoadData(varNetwork);
|
---|
[13939] | 71 | problemData.Description = varNetwork.Description + Environment.NewLine + varNetwork.NetworkDefinition;
|
---|
| 72 | return problemData;
|
---|
| 73 | }
|
---|
| 74 | }
|
---|
| 75 | }
|
---|