[14630] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[14630] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 30 | public sealed class GaussianProcessVariableNetwork : VariableNetwork {
|
---|
| 31 | private int numberOfFeatures;
|
---|
| 32 | private double noiseRatio;
|
---|
| 33 |
|
---|
| 34 | public override string Name { get { return string.Format("GaussianProcessVariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } }
|
---|
| 35 |
|
---|
| 36 | public GaussianProcessVariableNetwork(int numberOfFeatures, double noiseRatio,
|
---|
| 37 | IRandom rand)
|
---|
| 38 | : base(250, 250, numberOfFeatures, noiseRatio, rand) {
|
---|
| 39 | this.noiseRatio = noiseRatio;
|
---|
| 40 | this.numberOfFeatures = numberOfFeatures;
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | // sample the input variables that are actually used and sample from a Gaussian process
|
---|
| 44 | protected override IEnumerable<double> GenerateRandomFunction(IRandom rand, List<List<double>> xs, out string[] selectedVarNames, out double[] relevance) {
|
---|
| 45 | int nl = SampleNumberOfVariables(rand, xs.Count);
|
---|
| 46 |
|
---|
| 47 | var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(rand)
|
---|
| 48 | .Take(nl).ToArray();
|
---|
| 49 |
|
---|
| 50 | var selectedVars = selectedIdx.Select(i => xs[i]).ToArray();
|
---|
| 51 | selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray();
|
---|
| 52 | return SampleGaussianProcess(rand, selectedVars, out relevance);
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | private IEnumerable<double> SampleGaussianProcess(IRandom rand, List<double>[] xs, out double[] relevance) {
|
---|
| 56 | int nl = xs.Length;
|
---|
| 57 | int nRows = xs.First().Count;
|
---|
| 58 |
|
---|
| 59 | // sample u iid ~ N(0, 1)
|
---|
| 60 | var u = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(rand, 0, 1)).ToArray();
|
---|
| 61 |
|
---|
| 62 | // sample actual length-scales
|
---|
| 63 | var l = Enumerable.Range(0, nl)
|
---|
| 64 | .Select(_ => rand.NextDouble() * 2 + 0.5)
|
---|
| 65 | .ToArray();
|
---|
| 66 |
|
---|
| 67 | double[,] K = CalculateCovariance(xs, l);
|
---|
| 68 |
|
---|
| 69 | // decompose
|
---|
| 70 | alglib.trfac.spdmatrixcholesky(ref K, nRows, false);
|
---|
| 71 |
|
---|
| 72 |
|
---|
| 73 | // calc y = Lu
|
---|
| 74 | var y = new double[u.Length];
|
---|
| 75 | alglib.ablas.rmatrixmv(nRows, nRows, K, 0, 0, 0, u, 0, ref y, 0);
|
---|
| 76 |
|
---|
| 77 | // calculate relevance by removing dimensions
|
---|
| 78 | relevance = CalculateRelevance(y, u, xs, l);
|
---|
| 79 |
|
---|
| 80 | return y;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // calculate variable relevance based on removal of variables
|
---|
| 84 | // 1) to remove a variable we set it's length scale to infinity (no relation of the variable value to the target)
|
---|
| 85 | // 2) calculate MSE of the original target values (y) to the updated targes y' (after variable removal)
|
---|
| 86 | // 3) relevance is larger if MSE(y,y') is large
|
---|
| 87 | // 4) scale impacts so that the most important variable has impact = 1
|
---|
| 88 | private double[] CalculateRelevance(double[] y, double[] u, List<double>[] xs, double[] l) {
|
---|
| 89 | int nRows = xs.First().Count;
|
---|
| 90 | var changedL = new double[l.Length];
|
---|
| 91 | var relevance = new double[l.Length];
|
---|
| 92 | for(int i = 0; i < l.Length; i++) {
|
---|
| 93 | Array.Copy(l, changedL, changedL.Length);
|
---|
| 94 | changedL[i] = double.MaxValue;
|
---|
| 95 | var changedK = CalculateCovariance(xs, changedL);
|
---|
| 96 |
|
---|
| 97 | var yChanged = new double[u.Length];
|
---|
| 98 | alglib.ablas.rmatrixmv(nRows, nRows, changedK, 0, 0, 0, u, 0, ref yChanged, 0);
|
---|
| 99 |
|
---|
| 100 | OnlineCalculatorError error;
|
---|
| 101 | var mse = OnlineMeanSquaredErrorCalculator.Calculate(y, yChanged, out error);
|
---|
| 102 | if(error != OnlineCalculatorError.None) mse = double.MaxValue;
|
---|
| 103 | relevance[i] = mse;
|
---|
| 104 | }
|
---|
| 105 | // scale so that max relevance is 1.0
|
---|
| 106 | var maxRel = relevance.Max();
|
---|
| 107 | for(int i = 0; i < relevance.Length; i++) relevance[i] /= maxRel;
|
---|
| 108 | return relevance;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | private double[,] CalculateCovariance(List<double>[] xs, double[] l) {
|
---|
| 112 | int nRows = xs.First().Count;
|
---|
| 113 | double[,] K = new double[nRows, nRows];
|
---|
| 114 | for(int r = 0; r < nRows; r++) {
|
---|
| 115 | double[] xi = xs.Select(x => x[r]).ToArray();
|
---|
| 116 | for(int c = 0; c <= r; c++) {
|
---|
| 117 | double[] xj = xs.Select(x => x[c]).ToArray();
|
---|
| 118 | double dSqr = xi.Zip(xj, (xik, xjk) => (xik - xjk))
|
---|
| 119 | .Select(dk => dk * dk)
|
---|
| 120 | .Zip(l, (dk, lk) => dk / lk)
|
---|
| 121 | .Sum();
|
---|
| 122 | K[r, c] = Math.Exp(-dSqr);
|
---|
| 123 | }
|
---|
| 124 | }
|
---|
| 125 | // add a small diagonal matrix for numeric stability
|
---|
| 126 | for(int i = 0; i < nRows; i++) {
|
---|
| 127 | K[i, i] += 1.0E-7;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | return K;
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | }
|
---|