[16264] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[16264] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[17092] | 25 | using HeuristicLab.Common;
|
---|
[16264] | 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[16431] | 29 | public class RocketFuelFlow : ArtificialRegressionDataDescriptor {
|
---|
[16394] | 30 | public override string Name { get { return "Rocket Fuel Flow m_dot = p0 A / sqrt(T0) * sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1)))"; } }
|
---|
[16264] | 31 |
|
---|
| 32 | public override string Description {
|
---|
| 33 | get {
|
---|
[16394] | 34 | return "A full description of this problem instance is given in: " + Environment.NewLine +
|
---|
| 35 | "Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " +
|
---|
| 36 | "modeling generalized separable systems\", Expert Systems with Applications, Volume 109, 2018, " +
|
---|
| 37 | "Pages 25-34 https://doi.org/10.1016/j.eswa.2018.05.021. " + Environment.NewLine +
|
---|
| 38 | "Function: m_dot = p0 A / sqrt(T0) * sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1)))" + Environment.NewLine +
|
---|
[17092] | 39 | "with total pressure p0 ∈ [4e5 Pa, 6e5 Pa]," + Environment.NewLine +
|
---|
| 40 | "cross-sectional area of the nozzle A ∈ [0.5m², 1.5m²]," + Environment.NewLine +
|
---|
| 41 | "total temperature T0 ∈ [250°K, 260°K]," + Environment.NewLine +
|
---|
| 42 | "specific heat capacity γ = 1.4 and gas constant R = 287 J/(kg*K)" + Environment.NewLine +
|
---|
| 43 | "The factor sqrt(γ/R (2/(γ+1))^((γ+1) / (γ-1))) is constant because γ and R are constants.";
|
---|
[16264] | 44 | }
|
---|
| 45 | }
|
---|
| 46 |
|
---|
[16394] | 47 | protected override string TargetVariable { get { return "m_dot"; } }
|
---|
[17092] | 48 | protected override string[] VariableNames { get { return new string[] { "p0", "A", "T0", "m_dot", "m_dot_noise" }; } }
|
---|
[16394] | 49 | protected override string[] AllowedInputVariables { get { return new string[] { "p0", "A", "T0" }; } }
|
---|
[16264] | 50 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 51 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
| 52 | protected override int TestPartitionStart { get { return 100; } }
|
---|
| 53 | protected override int TestPartitionEnd { get { return 200; } }
|
---|
| 54 |
|
---|
| 55 | public int Seed { get; private set; }
|
---|
| 56 |
|
---|
| 57 | public RocketFuelFlow() : this((int)System.DateTime.Now.Ticks) { }
|
---|
| 58 |
|
---|
| 59 | public RocketFuelFlow(int seed) {
|
---|
| 60 | Seed = seed;
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | protected override List<List<double>> GenerateValues() {
|
---|
| 64 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 65 |
|
---|
| 66 | List<List<double>> data = new List<List<double>>();
|
---|
[16394] | 67 | var p0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 4.0e5, 6.0e5).ToList();
|
---|
| 68 | var A = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
|
---|
| 69 | var T0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 250.0, 260.0).ToList();
|
---|
[16264] | 70 |
|
---|
[17092] | 71 | var m_dot = new List<double>();
|
---|
| 72 | var m_dot_noise = new List<double>();
|
---|
[16394] | 73 | data.Add(p0);
|
---|
| 74 | data.Add(A);
|
---|
| 75 | data.Add(T0);
|
---|
| 76 | data.Add(m_dot);
|
---|
[17092] | 77 | data.Add(m_dot_noise);
|
---|
[16394] | 78 | double R = 287.0;
|
---|
| 79 | double γ = 1.4;
|
---|
| 80 | var c = Math.Sqrt(γ / R * Math.Pow(2 / (γ + 1), (γ + 1) / (γ - 1)));
|
---|
| 81 | for (int i = 0; i < p0.Count; i++) {
|
---|
| 82 | double m_dot_i = p0[i] * A[i] / Math.Sqrt(T0[i]) * c;
|
---|
| 83 | m_dot.Add(m_dot_i);
|
---|
[16264] | 84 | }
|
---|
| 85 |
|
---|
[17092] | 86 | var sigma_noise = 0.05 * m_dot.StandardDeviationPop();
|
---|
| 87 | m_dot_noise.AddRange(m_dot.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
[16264] | 88 | return data;
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | }
|
---|