[16264] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[16264] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Random;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[16431] | 28 | public class AircraftLift : ArtificialRegressionDataDescriptor {
|
---|
[16394] | 29 | public override string Name { get { return "Aircraft Lift Coefficient C_L = C_La (a - a0) + C_Ld_e d_e S_HT / S_ref"; } }
|
---|
[16264] | 30 |
|
---|
| 31 | public override string Description {
|
---|
| 32 | get {
|
---|
[16394] | 33 | return "A full description of this problem instance is given in: " + Environment.NewLine +
|
---|
| 34 | "Chen Chen, Changtong Luo, Zonglin Jiang, \"A multilevel block building algorithm for fast " +
|
---|
| 35 | "modeling generalized separable systems\", Expert Systems with Applications, Volume 109, 2018, " +
|
---|
| 36 | "Pages 25-34 https://doi.org/10.1016/j.eswa.2018.05.021. " + Environment.NewLine +
|
---|
| 37 | "Function: C_L = C_La (a - a0) + C_Ld_e d_e S_HT / S_ref" + Environment.NewLine +
|
---|
| 38 | "with C_La ∈ [0.4, 0.8]," + Environment.NewLine +
|
---|
| 39 | "a ∈ [5°, 10°]," + Environment.NewLine +
|
---|
| 40 | "C_Ld_e ∈ [0.4, 0.8]," + Environment.NewLine +
|
---|
| 41 | "d_e ∈ [5°, 10°]," + Environment.NewLine +
|
---|
| 42 | "S_HT ∈ [1m², 1.5m²]," + Environment.NewLine +
|
---|
| 43 | "S_ref ∈ [5m², 7m²]," + Environment.NewLine +
|
---|
| 44 | "a0 is set to -2°";
|
---|
[16264] | 45 | }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
[16394] | 48 | protected override string TargetVariable { get { return "C_L"; } }
|
---|
| 49 | protected override string[] VariableNames { get { return new string[] { "C_La", "a", "a0", "C_Ld_e", "d_e", "S_HT", "C_L" }; } }
|
---|
| 50 | protected override string[] AllowedInputVariables { get { return new string[] { "C_La", "a", "a0", "C_Ld_e", "d_e", "S_HT" }; } }
|
---|
[16264] | 51 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 52 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
| 53 | protected override int TestPartitionStart { get { return 100; } }
|
---|
| 54 | protected override int TestPartitionEnd { get { return 200; } }
|
---|
| 55 |
|
---|
| 56 | public int Seed { get; private set; }
|
---|
| 57 |
|
---|
| 58 | public AircraftLift() : this((int)System.DateTime.Now.Ticks) { }
|
---|
| 59 |
|
---|
| 60 | public AircraftLift(int seed) {
|
---|
| 61 | Seed = seed;
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | protected override List<List<double>> GenerateValues() {
|
---|
| 65 | var rand = new MersenneTwister((uint)Seed);
|
---|
| 66 |
|
---|
| 67 | List<List<double>> data = new List<List<double>>();
|
---|
[16394] | 68 | var C_La = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
| 69 | var a = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList();
|
---|
| 70 | var C_Ld_e = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
| 71 | var d_e = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList();
|
---|
| 72 | var S_HT = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
| 73 | var S_ref = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList();
|
---|
[16264] | 74 |
|
---|
[16394] | 75 | List<double> C_L = new List<double>();
|
---|
| 76 | data.Add(C_La);
|
---|
| 77 | data.Add(a);
|
---|
| 78 | data.Add(C_Ld_e);
|
---|
| 79 | data.Add(d_e);
|
---|
| 80 | data.Add(S_HT);
|
---|
| 81 | data.Add(S_ref);
|
---|
| 82 | data.Add(C_L);
|
---|
[16264] | 83 |
|
---|
[16394] | 84 | double a0 = -2.0;
|
---|
| 85 |
|
---|
| 86 | for (int i = 0; i < C_La.Count; i++) {
|
---|
| 87 | double C_Li = C_La[i] * (a[i] - a0) + C_Ld_e[i] * d_e[i] * S_HT[i] / S_ref[i];
|
---|
| 88 | C_L.Add(C_Li);
|
---|
[16264] | 89 | }
|
---|
| 90 |
|
---|
| 91 | return data;
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | }
|
---|