[15951] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16565] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15951] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Globalization;
|
---|
| 25 | using System.IO;
|
---|
| 26 | using System.IO.Compression;
|
---|
| 27 | using System.Linq;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 |
|
---|
[15952] | 30 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[15951] | 31 | public class PennMLRegressionInstanceProvider : ResourceRegressionInstanceProvider {
|
---|
| 32 | public override string Name {
|
---|
| 33 | get { return "PennML Regression Problems"; }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | public override string Description {
|
---|
| 37 | get { return "A set of datasets used for benchmarking symbolic regression algorithms."; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | public override Uri WebLink {
|
---|
| 41 | get { return new Uri("https://github.com/EpistasisLab/penn-ml-benchmarks"); }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public override string ReferencePublication {
|
---|
| 45 | get { return "Patryk Orzechowski, William La Cava, Jason H. Moore - Where are we now? A large benchmark study of recent symbolic regression methods"; }
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | protected override string FileName {
|
---|
| 49 | get { return "PennML"; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | // the reference publication uses 75% of the samples in each of the datasets for training and the remaining 25% for testing
|
---|
| 53 | private const double trainTestSplit = 0.75;
|
---|
| 54 |
|
---|
| 55 | public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
|
---|
| 56 | var instanceArchiveName = GetResourceName(FileName + @"\.zip");
|
---|
| 57 | using (var instancesZipFile = new ZipArchive(GetType().Assembly.GetManifestResourceStream(instanceArchiveName), ZipArchiveMode.Read)) {
|
---|
| 58 | foreach (var entry in instancesZipFile.Entries) {
|
---|
| 59 | NumberFormatInfo numberFormat;
|
---|
| 60 | DateTimeFormatInfo dateFormat;
|
---|
| 61 | char separator;
|
---|
| 62 | using (var stream = entry.Open()) {
|
---|
| 63 | // the method below disposes the stream
|
---|
| 64 | TableFileParser.DetermineFileFormat(stream, out numberFormat, out dateFormat, out separator);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | using (var stream = entry.Open()) {
|
---|
| 68 | using (var reader = new StreamReader(stream)) {
|
---|
| 69 | var header = reader.ReadLine(); // read the first line
|
---|
| 70 |
|
---|
| 71 | // by convention each dataset from the PennML collection reserves the last column for the target
|
---|
| 72 | var variableNames = header.Split(separator);
|
---|
| 73 | var allowedInputVariables = variableNames.Take(variableNames.Length - 1);
|
---|
| 74 | var target = variableNames.Last();
|
---|
| 75 |
|
---|
| 76 | // count lines
|
---|
| 77 | int lines = 0; while (reader.ReadLine() != null) lines++;
|
---|
| 78 |
|
---|
| 79 | var trainEnd = (int)Math.Round(lines * trainTestSplit);
|
---|
| 80 | var trainRange = new IntRange(0, trainEnd);
|
---|
| 81 | var testRange = new IntRange(trainEnd, lines);
|
---|
| 82 |
|
---|
| 83 | var descriptor = new PennMLRegressionDataDescriptor(entry.Name, variableNames, allowedInputVariables, target, trainRange, testRange);
|
---|
| 84 | yield return descriptor;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | }
|
---|