Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus4.cs @ 17735

Last change on this file since 17735 was 17678, checked in by gkronber, 4 years ago

#3075: changed title for noise part

File size: 3.4 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus4 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus4() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus4(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus4(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Radiated gravitational wave power: -32/5*G**4/c**5*(m1*m2)**2*(m1+m2)/r**5 | {0} samples | {1}",
32          trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "Pwr" : "Pwr_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return new[] {"G", "c", "m1", "m2", "r", noiseRatio == null ? "Pwr" : "Pwr_noise"}; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"G", "c", "m1", "m2", "r"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data = new List<List<double>>();
55      var G    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
56      var c    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
57      var m1   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var m2   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var r    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
60
61      var Pwr = new List<double>();
62
63      data.Add(G);
64      data.Add(c);
65      data.Add(m1);
66      data.Add(m2);
67      data.Add(r);
68      data.Add(Pwr);
69
70      for (var i = 0; i < G.Count; i++) {
71        var res = -32.0 / 5 * Math.Pow(G[i], 4) / Math.Pow(c[i], 5) * Math.Pow(m1[i] * m2[i], 2) * (m1[i] + m2[i]) /
72                  Math.Pow(r[i], 5);
73        Pwr.Add(res);
74      }
75
76      if (noiseRatio != null) {
77        var Pwr_noise   = new List<double>();
78        var sigma_noise = (double) noiseRatio * Pwr.StandardDeviationPop();
79        Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
80        data.Remove(Pwr);
81        data.Add(Pwr_noise);
82      }
83
84      return data;
85    }
86  }
87}
Note: See TracBrowser for help on using the repository browser.