Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus3.cs @ 17764

Last change on this file since 17764 was 17678, checked in by gkronber, 5 years ago

#3075: changed title for noise part

File size: 3.2 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus3 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus3() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus3(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus3(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Compton Scattering: E_n/(1+E_n/(m*c**2)*(1-cos(theta))) | {0} samples | {1}", trainingSamples,
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "K" : "K_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return new[] {"E_n", "m", "c", "theta", noiseRatio == null ? "K" : "K_noise"}; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"E_n", "m", "c", "theta"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var E_n   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var m     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var c     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59
60      var K = new List<double>();
61
62      data.Add(E_n);
63      data.Add(m);
64      data.Add(c);
65      data.Add(theta);
66      data.Add(K);
67
68      for (var i = 0; i < E_n.Count; i++) {
69        var res = E_n[i] / (1 + E_n[i] / (m[i] * Math.Pow(c[i], 2)) * (1 - Math.Cos(theta[i])));
70        K.Add(res);
71      }
72
73      if (noiseRatio != null) {
74        var K_noise     = new List<double>();
75        var sigma_noise = (double) noiseRatio * K.StandardDeviationPop();
76        K_noise.AddRange(K.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
77        data.Remove(K);
78        data.Add(K_noise);
79      }
80
81      return data;
82    }
83  }
84}
Note: See TracBrowser for help on using the repository browser.