Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus3.cs @ 18242

Last change on this file since 18242 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.0 KB
RevLine 
[17643]1using System;
2using System.Collections.Generic;
3using System.Linq;
[17649]4using HeuristicLab.Common;
[17643]5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
[17677]8  public class FeynmanBonus3 : FeynmanDescriptor {
[17643]9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
[17677]12    public FeynmanBonus3() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
[17643]13
[17677]14    public FeynmanBonus3(int seed) {
[17643]15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
[17649]18      noiseRatio      = null;
[17643]19    }
20
[17677]21    public FeynmanBonus3(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
[17643]22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
[17649]25      this.noiseRatio      = noiseRatio;
[17643]26    }
27
28    public override string Name {
29      get {
[17649]30        return string.Format(
[17805]31          "Compton Scattering: E_n/(1+E_n/(m*c**2)*(1-cos(theta))) | {0}",
[17678]32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17643]33      }
34    }
35
[17649]36    protected override string TargetVariable { get { return noiseRatio == null ? "K" : "K_noise"; } }
37
38    protected override string[] VariableNames {
[17973]39      get { return noiseRatio == null ? new[] { "E_n", "m", "c", "theta", "K" } : new[] { "E_n", "m", "c", "theta", "K", "K_noise" }; }
[17649]40    }
41
[17643]42    protected override string[] AllowedInputVariables { get { return new[] {"E_n", "m", "c", "theta"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var E_n   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var m     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var c     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59
60      var K = new List<double>();
61
62      data.Add(E_n);
63      data.Add(m);
64      data.Add(c);
65      data.Add(theta);
66      data.Add(K);
67
68      for (var i = 0; i < E_n.Count; i++) {
69        var res = E_n[i] / (1 + E_n[i] / (m[i] * Math.Pow(c[i], 2)) * (1 - Math.Cos(theta[i])));
70        K.Add(res);
71      }
72
[18032]73      var targetNoise = ValueGenerator.GenerateNoise(K, rand, noiseRatio);
[17973]74      if (targetNoise != null) data.Add(targetNoise);
[17649]75
[17643]76      return data;
77    }
78  }
79}
Note: See TracBrowser for help on using the repository browser.