Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus20.cs @ 17764

Last change on this file since 17764 was 17678, checked in by gkronber, 4 years ago

#3075: changed title for noise part

File size: 3.9 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus20 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus20() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus20(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus20(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Schwarz 13.132 (Klein-Nishina): pi*alpha**2*h**2/(m**2*c**2)*(omega_0/omega)**2*(omega_0/omega+omega/omega_0-sin(beta)**2) | {0} samples | {1}",
32          trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "A" : "A_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return new[] {"omega", "omega_0", "alpha", "h", "m", "c", "beta", noiseRatio == null ? "A" : "A_noise"}; }
40    }
41
42    protected override string[] AllowedInputVariables {
43      get { return new[] {"omega", "omega_0", "alpha", "h", "m", "c", "beta"}; }
44    }
45
46    public int Seed { get; private set; }
47
48    protected override int TrainingPartitionStart { get { return 0; } }
49    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
50    protected override int TestPartitionStart { get { return trainingSamples; } }
51    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
52
53    protected override List<List<double>> GenerateValues() {
54      var rand = new MersenneTwister((uint) Seed);
55
56      var data    = new List<List<double>>();
57      var omega   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var alpha   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60      var h       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
61      var m       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
62      var c       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
63      var beta    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0, 6).ToList();
64
65      var A = new List<double>();
66
67      data.Add(omega);
68      data.Add(omega_0);
69      data.Add(alpha);
70      data.Add(h);
71      data.Add(m);
72      data.Add(c);
73      data.Add(beta);
74      data.Add(A);
75
76      for (var i = 0; i < omega.Count; i++) {
77        var res = Math.PI * Math.Pow(alpha[i], 2) * Math.Pow(h[i], 2) /
78                  (Math.Pow(m[i], 2) * Math.Pow(c[i], 2)) * Math.Pow(omega_0[i] / omega[i], 2) *
79                  (omega_0[i] / omega[i] + omega[i] / omega_0[i] - Math.Pow(Math.Sin(beta[i]), 2));
80        A.Add(res);
81      }
82
83      if (noiseRatio != null) {
84        var A_noise     = new List<double>();
85        var sigma_noise = (double) noiseRatio * A.StandardDeviationPop();
86        A_noise.AddRange(A.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
87        data.Remove(A);
88        data.Add(A_noise);
89      }
90
91      return data;
92    }
93  }
94}
Note: See TracBrowser for help on using the repository browser.