[17643] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
[17649] | 4 | using HeuristicLab.Common;
|
---|
[17643] | 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class FeynmanBonus19 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
[17649] | 12 | public FeynmanBonus19() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
[17643] | 13 |
|
---|
| 14 | public FeynmanBonus19(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
[17649] | 18 | noiseRatio = null;
|
---|
[17643] | 19 | }
|
---|
| 20 |
|
---|
[17649] | 21 | public FeynmanBonus19(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
[17643] | 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
[17649] | 25 | this.noiseRatio = noiseRatio;
|
---|
[17643] | 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
| 30 | return string.Format(
|
---|
[17805] | 31 | "Weinberg 15.2.2: -1/(8*pi*G)*(c**4*k_f/r**2 + c**2*H_G**2*(1-2*alpha)) | {0}",
|
---|
| 32 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17643] | 33 | }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
[17649] | 36 | protected override string TargetVariable { get { return noiseRatio == null ? "pr" : "pr_noise"; } }
|
---|
| 37 |
|
---|
| 38 | protected override string[] VariableNames {
|
---|
[17973] | 39 | get { return noiseRatio == null ? new[] { "G", "k_f", "r", "H_G", "alpha", "c", "pr" } : new[] { "G", "k_f", "r", "H_G", "alpha", "c", "pr", "pr_noise" }; }
|
---|
[17649] | 40 | }
|
---|
| 41 |
|
---|
[17643] | 42 | protected override string[] AllowedInputVariables { get { return new[] {"G", "k_f", "r", "H_G", "alpha", "c"}; } }
|
---|
| 43 |
|
---|
| 44 | public int Seed { get; private set; }
|
---|
| 45 |
|
---|
| 46 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 47 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 49 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 50 |
|
---|
| 51 | protected override List<List<double>> GenerateValues() {
|
---|
| 52 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 53 |
|
---|
| 54 | var data = new List<List<double>>();
|
---|
| 55 | var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 56 | var k_f = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 57 | var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 58 | var H_G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 59 | var alpha = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 60 | var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 61 |
|
---|
| 62 | var pr = new List<double>();
|
---|
| 63 |
|
---|
| 64 | data.Add(G);
|
---|
| 65 | data.Add(k_f);
|
---|
| 66 | data.Add(r);
|
---|
| 67 | data.Add(H_G);
|
---|
| 68 | data.Add(alpha);
|
---|
| 69 | data.Add(c);
|
---|
| 70 | data.Add(pr);
|
---|
| 71 |
|
---|
| 72 | for (var i = 0; i < G.Count; i++) {
|
---|
| 73 | var res = -1.0 / (8 * Math.PI * G[i]) * (Math.Pow(c[i], 4) * k_f[i] / Math.Pow(r[i], 2) +
|
---|
[17674] | 74 | Math.Pow(c[i], 2) * Math.Pow(H_G[i], 2) * (1 - 2 * alpha[i]));
|
---|
[17643] | 75 | pr.Add(res);
|
---|
| 76 | }
|
---|
| 77 |
|
---|
[18032] | 78 | var targetNoise = ValueGenerator.GenerateNoise(pr, rand, noiseRatio);
|
---|
[17973] | 79 | if (targetNoise != null) data.Add(targetNoise);
|
---|
[17649] | 80 |
|
---|
[17643] | 81 | return data;
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 | } |
---|