Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus11.cs @ 17764

Last change on this file since 17764 was 17678, checked in by gkronber, 4 years ago

#3075: changed title for noise part

File size: 3.8 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus11 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus11() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus11(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus11(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "Goldstein 3.99: sqrt(1+2*epsilon**2*E_n*L**2/(m*(Z_1*Z_2*q**2)**2)) | {0} samples | {1}",
32          trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "alpha" : "alpha_noise"; } }
37
38    protected override string[] VariableNames {
39      get {
40        return new[] {"epsilon", "L", "m", "Z_1", "Z_2", "q", "E_n", noiseRatio == null ? "alpha" : "alpha_noise"};
41      }
42    }
43
44    protected override string[] AllowedInputVariables {
45      get { return new[] {"epsilon", "L", "m", "Z_1", "Z_2", "q", "E_n"}; }
46    }
47
48    public int Seed { get; private set; }
49
50    protected override int TrainingPartitionStart { get { return 0; } }
51    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
52    protected override int TestPartitionStart { get { return trainingSamples; } }
53    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
54
55    protected override List<List<double>> GenerateValues() {
56      var rand = new MersenneTwister((uint) Seed);
57
58      var data    = new List<List<double>>();
59      var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
60      var L       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
61      var m       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
62      var Z_1     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
63      var Z_2     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
64      var q       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
65      var E_n     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
66
67      var alpha = new List<double>();
68
69      data.Add(epsilon);
70      data.Add(L);
71      data.Add(m);
72      data.Add(Z_1);
73      data.Add(Z_2);
74      data.Add(q);
75      data.Add(E_n);
76      data.Add(alpha);
77
78      for (var i = 0; i < epsilon.Count; i++) {
79        var res = Math.Sqrt(1 + 2 * Math.Pow(epsilon[i], 2) * E_n[i] * Math.Pow(L[i], 2) /
80                            (m[i] * Math.Pow(Z_1[i] * Z_2[i] * Math.Pow(q[i], 2), 2)));
81        alpha.Add(res);
82      }
83
84      if (noiseRatio != null) {
85        var alpha_noise = new List<double>();
86        var sigma_noise = (double) noiseRatio * alpha.StandardDeviationPop();
87        alpha_noise.AddRange(alpha.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
88        data.Remove(alpha);
89        data.Add(alpha_noise);
90      }
91
92      return data;
93    }
94  }
95}
Note: See TracBrowser for help on using the repository browser.