Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus10.cs @ 17764

Last change on this file since 17764 was 17678, checked in by gkronber, 5 years ago

#3075: changed title for noise part

File size: 3.1 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class FeynmanBonus10 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public FeynmanBonus10() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public FeynmanBonus10(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public FeynmanBonus10(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0} samples | {1}",
31          trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "t" : "t_noise"; } }
36
37    protected override string[] VariableNames {
38      get { return new[] {"d", "G", "m1", "m2", noiseRatio == null ? "t" : "t_noise"}; }
39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"d", "G", "m1", "m2"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data = new List<List<double>>();
54      var d    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
55      var G    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var m1   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var m2   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58
59      var t = new List<double>();
60
61      data.Add(d);
62      data.Add(G);
63      data.Add(m1);
64      data.Add(m2);
65      data.Add(t);
66
67      for (var i = 0; i < d.Count; i++) {
68        var res = 2 * Math.PI * Math.Pow(d[i], 3.0 / 2) / Math.Sqrt(G[i] * (m1[i] + m2[i]));
69        t.Add(res);
70      }
71
72      if (noiseRatio != null) {
73        var t_noise     = new List<double>();
74        var sigma_noise = (double) noiseRatio * t.StandardDeviationPop();
75        t_noise.AddRange(t.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
76        data.Remove(t);
77        data.Add(t_noise);
78      }
79
80      return data;
81    }
82  }
83}
Note: See TracBrowser for help on using the repository browser.