Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/FeynmanBonus10.cs @ 18242

Last change on this file since 18242 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 2.9 KB
RevLine 
[17643]1using System;
2using System.Collections.Generic;
3using System.Linq;
[17649]4using HeuristicLab.Common;
[17643]5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
[17677]8  public class FeynmanBonus10 : FeynmanDescriptor {
[17643]9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
[17677]12    public FeynmanBonus10() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
[17643]13
[17677]14    public FeynmanBonus10(int seed) {
[17643]15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
[17649]18      noiseRatio      = null;
[17643]19    }
20
[17677]21    public FeynmanBonus10(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
[17643]22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
[17649]25      this.noiseRatio      = noiseRatio;
[17643]26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0}",
31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17643]32      }
33    }
34
[17649]35    protected override string TargetVariable { get { return noiseRatio == null ? "t" : "t_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "d", "G", "m1", "m2", "t" } : new[] { "d", "G", "m1", "m2", "t", "t_noise" }; }
[17649]39    }
40
[17643]41    protected override string[] AllowedInputVariables { get { return new[] {"d", "G", "m1", "m2"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data = new List<List<double>>();
54      var d    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
55      var G    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var m1   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var m2   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58
59      var t = new List<double>();
60
61      data.Add(d);
62      data.Add(G);
63      data.Add(m1);
64      data.Add(m2);
65      data.Add(t);
66
67      for (var i = 0; i < d.Count; i++) {
[17649]68        var res = 2 * Math.PI * Math.Pow(d[i], 3.0 / 2) / Math.Sqrt(G[i] * (m1[i] + m2[i]));
[17643]69        t.Add(res);
70      }
71
[18032]72      var targetNoise = ValueGenerator.GenerateNoise(t, rand, noiseRatio);
[17973]73      if (targetNoise != null) data.Add(targetNoise);
[17649]74
[17643]75      return data;
76    }
77  }
78}
Note: See TracBrowser for help on using the repository browser.