[17643] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
[17649] | 4 | using HeuristicLab.Common;
|
---|
[17643] | 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
[17677] | 8 | public class FeynmanBonus10 : FeynmanDescriptor {
|
---|
[17643] | 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
[17677] | 12 | public FeynmanBonus10() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
[17643] | 13 |
|
---|
[17677] | 14 | public FeynmanBonus10(int seed) {
|
---|
[17643] | 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
[17649] | 18 | noiseRatio = null;
|
---|
[17643] | 19 | }
|
---|
| 20 |
|
---|
[17677] | 21 | public FeynmanBonus10(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
[17643] | 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
[17649] | 25 | this.noiseRatio = noiseRatio;
|
---|
[17643] | 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
[17805] | 30 | return string.Format("Goldstein 3.74: 2*pi*d**(3/2)/sqrt(G*(m1+m2)) | {0}",
|
---|
| 31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17643] | 32 | }
|
---|
| 33 | }
|
---|
| 34 |
|
---|
[17649] | 35 | protected override string TargetVariable { get { return noiseRatio == null ? "t" : "t_noise"; } }
|
---|
| 36 |
|
---|
| 37 | protected override string[] VariableNames {
|
---|
| 38 | get { return new[] {"d", "G", "m1", "m2", noiseRatio == null ? "t" : "t_noise"}; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
[17643] | 41 | protected override string[] AllowedInputVariables { get { return new[] {"d", "G", "m1", "m2"}; } }
|
---|
| 42 |
|
---|
| 43 | public int Seed { get; private set; }
|
---|
| 44 |
|
---|
| 45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 49 |
|
---|
| 50 | protected override List<List<double>> GenerateValues() {
|
---|
| 51 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 52 |
|
---|
| 53 | var data = new List<List<double>>();
|
---|
| 54 | var d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 55 | var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 56 | var m1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 57 | var m2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 58 |
|
---|
| 59 | var t = new List<double>();
|
---|
| 60 |
|
---|
| 61 | data.Add(d);
|
---|
| 62 | data.Add(G);
|
---|
| 63 | data.Add(m1);
|
---|
| 64 | data.Add(m2);
|
---|
| 65 | data.Add(t);
|
---|
| 66 |
|
---|
| 67 | for (var i = 0; i < d.Count; i++) {
|
---|
[17649] | 68 | var res = 2 * Math.PI * Math.Pow(d[i], 3.0 / 2) / Math.Sqrt(G[i] * (m1[i] + m2[i]));
|
---|
[17643] | 69 | t.Add(res);
|
---|
| 70 | }
|
---|
| 71 |
|
---|
[17649] | 72 | if (noiseRatio != null) {
|
---|
| 73 | var t_noise = new List<double>();
|
---|
[17805] | 74 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * t.StandardDeviationPop();
|
---|
[17649] | 75 | t_noise.AddRange(t.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 76 | data.Remove(t);
|
---|
| 77 | data.Add(t_noise);
|
---|
| 78 | }
|
---|
| 79 |
|
---|
[17643] | 80 | return data;
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 | } |
---|