Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman99.cs

Last change on this file was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.2 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman99 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman99() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman99(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman99(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
[17805]31          "III.19.51 -m*q**4/(2*(4*pi*epsilon)**2*h**2)*(1/n**2) | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "E_n" : "E_n_noise"; } }
37
38    protected override string[] VariableNames {
[17973]39      get { return noiseRatio == null ? new[] { "m", "q", "h", "n", "epsilon", "E_n" } : new[] { "m", "q", "h", "n", "epsilon", "E_n", "E_n_noise" }; }
[17647]40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"m", "q", "h", "n", "epsilon"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data    = new List<List<double>>();
55      var m       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var q       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var h       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var n       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60
61      var E_n = new List<double>();
62
63      data.Add(m);
64      data.Add(q);
65      data.Add(h);
66      data.Add(n);
67      data.Add(epsilon);
68      data.Add(E_n);
69
70      for (var i = 0; i < m.Count; i++) {
71        var res = -m[i] * Math.Pow(q[i], 4) / (2 * Math.Pow(4 * Math.PI * epsilon[i], 2) *
72                                               Math.Pow(h[i], 2) * (1.0 / Math.Pow(n[i], 2)));
73        E_n.Add(res);
74      }
75
[18032]76      var targetNoise = ValueGenerator.GenerateNoise(E_n, rand, noiseRatio);
[17973]77      if (targetNoise != null) data.Add(targetNoise);
[17647]78
79      return data;
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.