[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman90 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman90() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman90(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman90(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
| 30 | return string.Format(
|
---|
[17805] | 31 | "III.9.52 (p_d*Ef*t/h*sin((omega-omega_0)*t/2)**2/((omega-omega_0)*t/2)**2 | {0}",
|
---|
| 32 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 33 | }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | protected override string TargetVariable { get { return noiseRatio == null ? "prob" : "prob_noise"; } }
|
---|
| 37 |
|
---|
| 38 | protected override string[] VariableNames {
|
---|
| 39 | get { return new[] {"p_d", "Ef", "t", "h", "omega", "omega_0", noiseRatio == null ? "prob" : "prob_noise"}; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | protected override string[] AllowedInputVariables {
|
---|
| 43 | get { return new[] {"p_d", "Ef", "t", "h", "omega", "omega_0"}; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public int Seed { get; private set; }
|
---|
| 47 |
|
---|
| 48 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 49 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 50 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 51 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 52 |
|
---|
| 53 | protected override List<List<double>> GenerateValues() {
|
---|
| 54 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 55 |
|
---|
| 56 | var data = new List<List<double>>();
|
---|
| 57 | var p_d = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 58 | var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 59 | var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 60 | var h = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 61 | var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 62 | var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 63 |
|
---|
| 64 | var prob = new List<double>();
|
---|
| 65 |
|
---|
| 66 | data.Add(p_d);
|
---|
| 67 | data.Add(Ef);
|
---|
| 68 | data.Add(t);
|
---|
| 69 | data.Add(h);
|
---|
| 70 | data.Add(omega);
|
---|
| 71 | data.Add(omega_0);
|
---|
| 72 | data.Add(prob);
|
---|
| 73 |
|
---|
| 74 | for (var i = 0; i < p_d.Count; i++) {
|
---|
| 75 | var res = p_d[i] * Ef[i] * t[i] / h[i] *
|
---|
| 76 | Math.Pow(Math.Sin((omega[i] - omega_0[i]) * t[i] / 2), 2) /
|
---|
| 77 | Math.Pow((omega[i] - omega_0[i]) * t[i] / 2, 2);
|
---|
| 78 | prob.Add(res);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | if (noiseRatio != null) {
|
---|
| 82 | var prob_noise = new List<double>();
|
---|
[17805] | 83 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * prob.StandardDeviationPop();
|
---|
[17647] | 84 | prob_noise.AddRange(prob.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 85 | data.Remove(prob);
|
---|
| 86 | data.Add(prob_noise);
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | return data;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | } |
---|