[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman80 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman80() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman80(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman80(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
[17805] | 30 | return string.Format("II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T))) | {0}",
|
---|
| 31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 32 | }
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | protected override string TargetVariable { get { return noiseRatio == null ? "n" : "n_noise"; } }
|
---|
| 36 |
|
---|
| 37 | protected override string[] VariableNames {
|
---|
| 38 | get { return new[] {"n_0", "kb", "T", "mom", "B", noiseRatio == null ? "n" : "n_noise"}; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | protected override string[] AllowedInputVariables { get { return new[] {"n_0", "kb", "T", "mom", "B"}; } }
|
---|
| 42 |
|
---|
| 43 | public int Seed { get; private set; }
|
---|
| 44 |
|
---|
| 45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 49 |
|
---|
| 50 | protected override List<List<double>> GenerateValues() {
|
---|
| 51 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 52 |
|
---|
| 53 | var data = new List<List<double>>();
|
---|
| 54 | var n_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 55 | var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 56 | var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 57 | var mom = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 58 | var B = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 59 |
|
---|
| 60 | var n = new List<double>();
|
---|
| 61 |
|
---|
| 62 | data.Add(n_0);
|
---|
| 63 | data.Add(kb);
|
---|
| 64 | data.Add(T);
|
---|
| 65 | data.Add(mom);
|
---|
| 66 | data.Add(B);
|
---|
| 67 | data.Add(n);
|
---|
| 68 |
|
---|
| 69 | for (var i = 0; i < n_0.Count; i++) {
|
---|
| 70 | var res = n_0[i] / (Math.Exp(mom[i] * B[i] / (kb[i] * T[i])) + Math.Exp(-mom[i] * B[i] / (kb[i] * T[i])));
|
---|
| 71 | n.Add(res);
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | if (noiseRatio != null) {
|
---|
| 75 | var n_noise = new List<double>();
|
---|
[17805] | 76 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * n.StandardDeviationPop();
|
---|
[17647] | 77 | n_noise.AddRange(n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 78 | data.Remove(n);
|
---|
| 79 | data.Add(n_noise);
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | return data;
|
---|
| 83 | }
|
---|
| 84 | }
|
---|
| 85 | } |
---|