Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman80.cs

Last change on this file was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.1 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman80 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman80() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman80(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman80(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("II.35.18 n_0/(exp(mom*B/(kb*T))+exp(-mom*B/(kb*T))) | {0}",
31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "n" : "n_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "n_0", "kb", "T", "mom", "B", "n" } : new[] { "n_0", "kb", "T", "mom", "B", "n", "n_noise" }; }
[17647]39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"n_0", "kb", "T", "mom", "B"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data = new List<List<double>>();
54      var n_0  = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
55      var kb   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var T    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var mom  = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var B    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59
60      var n = new List<double>();
61
62      data.Add(n_0);
63      data.Add(kb);
64      data.Add(T);
65      data.Add(mom);
66      data.Add(B);
67      data.Add(n);
68
69      for (var i = 0; i < n_0.Count; i++) {
70        var res = n_0[i] / (Math.Exp(mom[i] * B[i] / (kb[i] * T[i])) + Math.Exp(-mom[i] * B[i] / (kb[i] * T[i])));
71        n.Add(res);
72      }
73
[18032]74      var targetNoise = ValueGenerator.GenerateNoise(n, rand, noiseRatio);
[17973]75      if (targetNoise != null) data.Add(targetNoise);
[17647]76
77      return data;
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.