Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman7.cs @ 18242

Last change on this file since 18242 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.2 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman7 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman7() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman7(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman7(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("I.11.19 x1*y1+x2*y2+x3*y3 | {0}",
[17678]31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "A" : "A_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "x1", "x2", "x3", "y1", "y2", "y3", "A" } : new[] { "x1", "x2", "x3", "y1", "y2", "y3", "A", "A_noise" }; }
[17647]39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"x1", "x2", "x3", "y1", "y2", "y3"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data = new List<List<double>>();
54      var x1   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
55      var x2   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var x3   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var y1   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var y2   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var y3   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60
61      var A = new List<double>();
62
63      data.Add(x1);
64      data.Add(x2);
65      data.Add(x3);
66      data.Add(y1);
67      data.Add(y2);
68      data.Add(y3);
69      data.Add(A);
70
71      for (var i = 0; i < x1.Count; i++) {
72        var res = x1[i] * y1[i] + x2[i] * y2[i] + x3[i] * y3[i];
73        A.Add(res);
74      }
75
[18032]76      var targetNoise = ValueGenerator.GenerateNoise(A, rand, noiseRatio);
[17973]77      if (targetNoise != null) data.Add(targetNoise);
[17647]78
79      return data;
80    }
81  }
82}
Note: See TracBrowser for help on using the repository browser.