Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman61.cs @ 18242

Last change on this file since 18242 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.1 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman61 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman61() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman61(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman61(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("II.11.3 q*Ef/(m*(omega_0**2-omega**2)) | {0}",
31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "x" : "x_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "q", "Ef", "m", "omega_0", "omega", "x" } : new[] { "q", "Ef", "m", "omega_0", "omega", "x", "x_noise" }; }
[17647]39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"q", "Ef", "m", "omega_0", "omega"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data    = new List<List<double>>();
54      var q       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
55      var Ef      = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var m       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 5).ToList();
58      var omega   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
59
60      var x = new List<double>();
61
62      data.Add(q);
63      data.Add(Ef);
64      data.Add(m);
65      data.Add(omega_0);
66      data.Add(omega);
67      data.Add(x);
68
69      for (var i = 0; i < q.Count; i++) {
70        var res = q[i] * Ef[i] / (m[i] * (Math.Pow(omega_0[i], 2) - Math.Pow(omega[i], 2)));
71        x.Add(res);
72      }
73
[18032]74      var targetNoise = ValueGenerator.GenerateNoise(x, rand, noiseRatio);
[17973]75      if (targetNoise != null) data.Add(targetNoise);
[17647]76
77      return data;
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.