Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman57.cs @ 17682

Last change on this file since 17682 was 17678, checked in by gkronber, 4 years ago

#3075: changed title for noise part

File size: 3.2 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman57 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman57() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman57(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman57(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
31          "II.6.15b 3/(4*pi*epsilon)*p_d/r**3*cos(theta)*sin(theta) | {0} samples | {1}",
32          trainingSamples, noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "Ef" : "Ef_noise"; } }
37
38    protected override string[] VariableNames {
39      get { return new[] {"epsilon", "p_d", "theta", "r", noiseRatio == null ? "Ef" : "Ef_noise"}; }
40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"epsilon", "p_d", "theta", "r"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data    = new List<List<double>>();
55      var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var p_d     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var theta   = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var r       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59
60      var Ef = new List<double>();
61
62      data.Add(epsilon);
63      data.Add(p_d);
64      data.Add(theta);
65      data.Add(r);
66      data.Add(Ef);
67
68      for (var i = 0; i < epsilon.Count; i++) {
69        var res = 3.0 / (4 * Math.PI * epsilon[i]) * p_d[i] / Math.Pow(r[i], 3) * Math.Cos(theta[i]) * Math.Sin(theta[i]);
70        Ef.Add(res);
71      }
72
73      if (noiseRatio != null) {
74        var Ef_noise    = new List<double>();
75        var sigma_noise = (double) noiseRatio * Ef.StandardDeviationPop();
76        Ef_noise.AddRange(Ef.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
77        data.Remove(Ef);
78        data.Add(Ef_noise);
79      }
80
81      return data;
82    }
83  }
84}
Note: See TracBrowser for help on using the repository browser.