Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman56.cs

Last change on this file was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.3 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman56 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman56() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman56(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman56(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("II.6.15a 3/(4*pi*epsilon)*p_d*z/r**5*sqrt(x**2+y**2) | {0}",
31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "Ef" : "Ef_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "epsilon", "p_d", "r", "x", "y", "z", "Ef" } : new[] { "epsilon", "p_d", "r", "x", "y", "z", "Ef", "Ef_noise" }; }
[17647]39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"epsilon", "p_d", "r", "x", "y", "z"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data    = new List<List<double>>();
54      var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
55      var p_d     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
56      var r       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
57      var x       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
58      var y       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
59      var z       = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
60
61      var Ef = new List<double>();
62
63      data.Add(epsilon);
64      data.Add(p_d);
65      data.Add(r);
66      data.Add(x);
67      data.Add(y);
68      data.Add(z);
69      data.Add(Ef);
70
71      for (var i = 0; i < epsilon.Count; i++) {
[17674]72        var res = 3.0 / (4 * Math.PI * epsilon[i]) * p_d[i] * z[i] / Math.Pow(r[i], 5) *
[17647]73                  Math.Sqrt(Math.Pow(x[i], 2) + Math.Pow(y[i], 2));
74        Ef.Add(res);
75      }
76
[18032]77      var targetNoise = ValueGenerator.GenerateNoise(Ef, rand, noiseRatio);
[17973]78      if (targetNoise != null) data.Add(targetNoise);
[17647]79
80      return data;
81    }
82  }
83}
Note: See TracBrowser for help on using the repository browser.