[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman5 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman5() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman5(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman5(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
[17805] | 30 | return string.Format("I.9.18 G*m1*m2/((x2-x1)**2+(y2-y1)**2+(z2-z1)**2) | {0}",
|
---|
| 31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 32 | }
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | protected override string TargetVariable { get { return noiseRatio == null ? "F" : "F_noise"; } }
|
---|
| 36 |
|
---|
| 37 | protected override string[] VariableNames {
|
---|
| 38 | get { return new[] {"m1", "m2", "G", "x1", "x2", "y1", "y2", "z1", "z2", noiseRatio == null ? "F" : "F_noise"}; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | protected override string[] AllowedInputVariables {
|
---|
| 42 | get { return new[] {"m1", "m2", "G", "x1", "x2", "y1", "y2", "z1", "z2"}; }
|
---|
| 43 | }
|
---|
| 44 |
|
---|
| 45 | public int Seed { get; private set; }
|
---|
| 46 |
|
---|
| 47 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 48 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 49 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 50 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 51 |
|
---|
| 52 | protected override List<List<double>> GenerateValues() {
|
---|
| 53 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 54 |
|
---|
| 55 | var data = new List<List<double>>();
|
---|
| 56 | var m1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 57 | var m2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 58 | var G = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 59 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
| 60 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 61 | var y1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
| 62 | var y2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 63 | var z1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 4).ToList();
|
---|
| 64 | var z2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 65 |
|
---|
| 66 | var F = new List<double>();
|
---|
| 67 |
|
---|
| 68 | data.Add(m1);
|
---|
| 69 | data.Add(m2);
|
---|
| 70 | data.Add(G);
|
---|
| 71 | data.Add(x1);
|
---|
| 72 | data.Add(x2);
|
---|
| 73 | data.Add(y1);
|
---|
| 74 | data.Add(y2);
|
---|
| 75 | data.Add(z1);
|
---|
| 76 | data.Add(z2);
|
---|
| 77 | data.Add(F);
|
---|
| 78 |
|
---|
| 79 | for (var i = 0; i < m1.Count; i++) {
|
---|
| 80 | var res = G[i] * m1[i] * m2[i] /
|
---|
| 81 | (Math.Pow(x2[i] - x1[i], 2) + Math.Pow(y2[i] - y1[i], 2) + Math.Pow(z2[i] - z1[i], 2));
|
---|
| 82 | F.Add(res);
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | if (noiseRatio != null) {
|
---|
| 86 | var F_noise = new List<double>();
|
---|
[17805] | 87 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * F.StandardDeviationPop();
|
---|
[17647] | 88 | F_noise.AddRange(F.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 89 | data.Remove(F);
|
---|
| 90 | data.Add(F_noise);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | return data;
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 | } |
---|