1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
8 | public class Feynman48 : FeynmanDescriptor {
|
---|
9 | private readonly int testSamples;
|
---|
10 | private readonly int trainingSamples;
|
---|
11 |
|
---|
12 | public Feynman48() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
13 |
|
---|
14 | public Feynman48(int seed) {
|
---|
15 | Seed = seed;
|
---|
16 | trainingSamples = 10000;
|
---|
17 | testSamples = 10000;
|
---|
18 | noiseRatio = null;
|
---|
19 | }
|
---|
20 |
|
---|
21 | public Feynman48(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
22 | Seed = seed;
|
---|
23 | this.trainingSamples = trainingSamples;
|
---|
24 | this.testSamples = testSamples;
|
---|
25 | this.noiseRatio = noiseRatio;
|
---|
26 | }
|
---|
27 |
|
---|
28 | public override string Name {
|
---|
29 | get {
|
---|
30 | return string.Format("I.44.4 n*kb*T*ln(V2/V1) | {0} samples | {1}", trainingSamples,
|
---|
31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
32 | }
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected override string TargetVariable { get { return noiseRatio == null ? "E_n" : "E_n_noise"; } }
|
---|
36 |
|
---|
37 | protected override string[] VariableNames {
|
---|
38 | get { return new[] {"n", "kb", "T", "V1", "V2", noiseRatio == null ? "E_n" : "E_n_noise"}; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | protected override string[] AllowedInputVariables { get { return new[] {"n", "kb", "T", "V1", "V2"}; } }
|
---|
42 |
|
---|
43 | public int Seed { get; private set; }
|
---|
44 |
|
---|
45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
49 |
|
---|
50 | protected override List<List<double>> GenerateValues() {
|
---|
51 | var rand = new MersenneTwister((uint) Seed);
|
---|
52 |
|
---|
53 | var data = new List<List<double>>();
|
---|
54 | var n = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
55 | var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
56 | var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
57 | var V1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
58 | var V2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
59 |
|
---|
60 | var E_n = new List<double>();
|
---|
61 |
|
---|
62 | data.Add(n);
|
---|
63 | data.Add(kb);
|
---|
64 | data.Add(T);
|
---|
65 | data.Add(V1);
|
---|
66 | data.Add(V2);
|
---|
67 | data.Add(E_n);
|
---|
68 |
|
---|
69 | for (var i = 0; i < n.Count; i++) {
|
---|
70 | var res = n[i] * kb[i] * T[i] * Math.Log(V2[i] / V1[i]);
|
---|
71 | E_n.Add(res);
|
---|
72 | }
|
---|
73 |
|
---|
74 | if (noiseRatio != null) {
|
---|
75 | var E_n_noise = new List<double>();
|
---|
76 | var sigma_noise = (double) noiseRatio * E_n.StandardDeviationPop();
|
---|
77 | E_n_noise.AddRange(E_n.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
78 | data.Remove(E_n);
|
---|
79 | data.Add(E_n_noise);
|
---|
80 | }
|
---|
81 |
|
---|
82 | return data;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | } |
---|