Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman44.cs @ 18058

Last change on this file since 18058 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.2 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman44 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman44() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman44(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman44(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format(
[17805]31          "I.41.16 h*omega**3/(pi**2 * c**2 * (exp(h*omega/(kb*T))-1)) | {0}",
32          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
[17647]33      }
34    }
35
36    protected override string TargetVariable { get { return noiseRatio == null ? "L_rad" : "L_rad_noise"; } }
37
38    protected override string[] VariableNames {
[17973]39      get { return noiseRatio == null ? new[] { "omega", "T", "h", "kb", "c", "L_rad" } : new[] { "omega", "T", "h", "kb", "c", "L_rad", "L_rad_noise" }; }
[17647]40    }
41
42    protected override string[] AllowedInputVariables { get { return new[] {"omega", "T", "h", "kb", "c"}; } }
43
44    public int Seed { get; private set; }
45
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
48    protected override int TestPartitionStart { get { return trainingSamples; } }
49    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
50
51    protected override List<List<double>> GenerateValues() {
52      var rand = new MersenneTwister((uint) Seed);
53
54      var data  = new List<List<double>>();
55      var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var T     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var h     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var kb    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59      var c     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
60
61      var L_rad = new List<double>();
62
63      data.Add(omega);
64      data.Add(T);
65      data.Add(h);
66      data.Add(kb);
67      data.Add(c);
68      data.Add(L_rad);
69
70      for (var i = 0; i < omega.Count; i++) {
71        var res = h[i] * Math.Pow(omega[i], 3) /
72                  (Math.Pow(Math.PI, 2) * Math.Pow(c[i], 2) *
73                   (Math.Exp(h[i] * omega[i] / (kb[i] * T[i])) - 1));
74        L_rad.Add(res);
75      }
76
[18032]77      var targetNoise = ValueGenerator.GenerateNoise(L_rad, rand, noiseRatio);
[17973]78      if (targetNoise != null) data.Add(targetNoise);
[17647]79
80      return data;
81    }
82  }
83}
Note: See TracBrowser for help on using the repository browser.