[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman44 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman44() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman44(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman44(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
| 30 | return string.Format(
|
---|
[17805] | 31 | "I.41.16 h*omega**3/(pi**2 * c**2 * (exp(h*omega/(kb*T))-1)) | {0}",
|
---|
| 32 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 33 | }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | protected override string TargetVariable { get { return noiseRatio == null ? "L_rad" : "L_rad_noise"; } }
|
---|
| 37 |
|
---|
| 38 | protected override string[] VariableNames {
|
---|
[17973] | 39 | get { return noiseRatio == null ? new[] { "omega", "T", "h", "kb", "c", "L_rad" } : new[] { "omega", "T", "h", "kb", "c", "L_rad", "L_rad_noise" }; }
|
---|
[17647] | 40 | }
|
---|
| 41 |
|
---|
| 42 | protected override string[] AllowedInputVariables { get { return new[] {"omega", "T", "h", "kb", "c"}; } }
|
---|
| 43 |
|
---|
| 44 | public int Seed { get; private set; }
|
---|
| 45 |
|
---|
| 46 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 47 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 49 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 50 |
|
---|
| 51 | protected override List<List<double>> GenerateValues() {
|
---|
| 52 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 53 |
|
---|
| 54 | var data = new List<List<double>>();
|
---|
| 55 | var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 56 | var T = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 57 | var h = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 58 | var kb = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 59 | var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
| 60 |
|
---|
| 61 | var L_rad = new List<double>();
|
---|
| 62 |
|
---|
| 63 | data.Add(omega);
|
---|
| 64 | data.Add(T);
|
---|
| 65 | data.Add(h);
|
---|
| 66 | data.Add(kb);
|
---|
| 67 | data.Add(c);
|
---|
| 68 | data.Add(L_rad);
|
---|
| 69 |
|
---|
| 70 | for (var i = 0; i < omega.Count; i++) {
|
---|
| 71 | var res = h[i] * Math.Pow(omega[i], 3) /
|
---|
| 72 | (Math.Pow(Math.PI, 2) * Math.Pow(c[i], 2) *
|
---|
| 73 | (Math.Exp(h[i] * omega[i] / (kb[i] * T[i])) - 1));
|
---|
| 74 | L_rad.Add(res);
|
---|
| 75 | }
|
---|
| 76 |
|
---|
[18032] | 77 | var targetNoise = ValueGenerator.GenerateNoise(L_rad, rand, noiseRatio);
|
---|
[17973] | 78 | if (targetNoise != null) data.Add(targetNoise);
|
---|
[17647] | 79 |
|
---|
| 80 | return data;
|
---|
| 81 | }
|
---|
| 82 | }
|
---|
| 83 | } |
---|