[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman33 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman33() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman33(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman33(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
| 30 | return string.Format(
|
---|
[17805] | 31 | "I.32.17 (1/2*epsilon*c*Ef**2)*(8*pi*r**2/3)*(omega**4/(omega**2-omega_0**2)**2) | {0}",
|
---|
| 32 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 33 | }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | protected override string TargetVariable { get { return noiseRatio == null ? "Pwr" : "Pwr_noise"; } }
|
---|
| 37 |
|
---|
| 38 | protected override string[] VariableNames {
|
---|
| 39 | get { return new[] {"epsilon", "c", "Ef", "r", "omega", "omega_0", noiseRatio == null ? "Pwr" : "Pwr_noise"}; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | protected override string[] AllowedInputVariables {
|
---|
| 43 | get { return new[] {"epsilon", "c", "Ef", "r", "omega", "omega_0"}; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public int Seed { get; private set; }
|
---|
| 47 |
|
---|
| 48 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 49 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 50 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 51 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 52 |
|
---|
| 53 | protected override List<List<double>> GenerateValues() {
|
---|
| 54 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 55 |
|
---|
| 56 | var data = new List<List<double>>();
|
---|
| 57 | var epsilon = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 58 | var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 59 | var Ef = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 60 | var r = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 61 | var omega = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
|
---|
| 62 | var omega_0 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 5).ToList();
|
---|
| 63 |
|
---|
| 64 | var Pwr = new List<double>();
|
---|
| 65 |
|
---|
| 66 | data.Add(epsilon);
|
---|
| 67 | data.Add(c);
|
---|
| 68 | data.Add(Ef);
|
---|
| 69 | data.Add(r);
|
---|
| 70 | data.Add(omega);
|
---|
| 71 | data.Add(omega_0);
|
---|
| 72 | data.Add(Pwr);
|
---|
| 73 |
|
---|
| 74 | for (var i = 0; i < epsilon.Count; i++) {
|
---|
[17659] | 75 | var res = 1.0 / 2 * epsilon[i] * c[i] * Math.Pow(Ef[i], 2) * (8 * Math.PI * Math.Pow(r[i], 2) / 3) *
|
---|
[17647] | 76 | (Math.Pow(omega[i], 4) / Math.Pow(Math.Pow(omega[i], 2) - Math.Pow(omega_0[i], 2), 2));
|
---|
| 77 | Pwr.Add(res);
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | if (noiseRatio != null) {
|
---|
| 81 | var Pwr_noise = new List<double>();
|
---|
[17805] | 82 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * Pwr.StandardDeviationPop();
|
---|
[17647] | 83 | Pwr_noise.AddRange(Pwr.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 84 | data.Remove(Pwr);
|
---|
| 85 | data.Add(Pwr_noise);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | return data;
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | } |
---|