1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Common;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
8 | public class Feynman29 : FeynmanDescriptor {
|
---|
9 | private readonly int testSamples;
|
---|
10 | private readonly int trainingSamples;
|
---|
11 |
|
---|
12 | public Feynman29() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
13 |
|
---|
14 | public Feynman29(int seed) {
|
---|
15 | Seed = seed;
|
---|
16 | trainingSamples = 10000;
|
---|
17 | testSamples = 10000;
|
---|
18 | noiseRatio = null;
|
---|
19 | }
|
---|
20 |
|
---|
21 | public Feynman29(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
22 | Seed = seed;
|
---|
23 | this.trainingSamples = trainingSamples;
|
---|
24 | this.testSamples = testSamples;
|
---|
25 | this.noiseRatio = noiseRatio;
|
---|
26 | }
|
---|
27 |
|
---|
28 | public override string Name {
|
---|
29 | get {
|
---|
30 | return string.Format("I.29.16 sqrt(x1**2+x2**2 - 2*x1*x2*cos(theta1 - theta2)) | {0}",
|
---|
31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
32 | }
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected override string TargetVariable { get { return noiseRatio == null ? "x" : "x_noise"; } }
|
---|
36 |
|
---|
37 | protected override string[] VariableNames {
|
---|
38 | get { return noiseRatio == null ? new[] { "x1", "x2", "theta1", "theta2", "x" } : new[] { "x1", "x2", "theta1", "theta2", "x", "x_noise" }; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | protected override string[] AllowedInputVariables { get { return new[] {"x1", "x2", "theta1", "theta2"}; } }
|
---|
42 |
|
---|
43 | public int Seed { get; private set; }
|
---|
44 |
|
---|
45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
49 |
|
---|
50 | protected override List<List<double>> GenerateValues() {
|
---|
51 | var rand = new MersenneTwister((uint) Seed);
|
---|
52 |
|
---|
53 | var data = new List<List<double>>();
|
---|
54 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
55 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
56 | var theta1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
57 | var theta2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
|
---|
58 |
|
---|
59 | var x = new List<double>();
|
---|
60 |
|
---|
61 | data.Add(x1);
|
---|
62 | data.Add(x2);
|
---|
63 | data.Add(theta1);
|
---|
64 | data.Add(theta2);
|
---|
65 | data.Add(x);
|
---|
66 |
|
---|
67 | for (var i = 0; i < x1.Count; i++) {
|
---|
68 | var res = Math.Sqrt(Math.Pow(x1[i], 2) + Math.Pow(x2[i], 2) -
|
---|
69 | 2 * x1[i] * x2[i] * Math.Cos(theta1[i] - theta2[i]));
|
---|
70 | x.Add(res);
|
---|
71 | }
|
---|
72 |
|
---|
73 | var targetNoise = ValueGenerator.GenerateNoise(x, rand, noiseRatio);
|
---|
74 | if (targetNoise != null) data.Add(targetNoise);
|
---|
75 |
|
---|
76 | return data;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | } |
---|