[17647] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using System.Linq;
|
---|
| 4 | using HeuristicLab.Common;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 |
|
---|
| 7 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 8 | public class Feynman2 : FeynmanDescriptor {
|
---|
| 9 | private readonly int testSamples;
|
---|
| 10 | private readonly int trainingSamples;
|
---|
| 11 |
|
---|
| 12 | public Feynman2() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
|
---|
| 13 |
|
---|
| 14 | public Feynman2(int seed) {
|
---|
| 15 | Seed = seed;
|
---|
| 16 | trainingSamples = 10000;
|
---|
| 17 | testSamples = 10000;
|
---|
| 18 | noiseRatio = null;
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public Feynman2(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
|
---|
| 22 | Seed = seed;
|
---|
| 23 | this.trainingSamples = trainingSamples;
|
---|
| 24 | this.testSamples = testSamples;
|
---|
| 25 | this.noiseRatio = noiseRatio;
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | public override string Name {
|
---|
| 29 | get {
|
---|
[17805] | 30 | return string.Format("I.6.20 exp(-(theta/sigma)**2/2)/(sqrt(2*pi)*sigma) | {0}",
|
---|
| 31 | noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
|
---|
[17647] | 32 | }
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | protected override string TargetVariable { get { return noiseRatio == null ? "f" : "f_noise"; } }
|
---|
| 36 |
|
---|
| 37 | protected override string[] VariableNames {
|
---|
| 38 | get { return new[] {"sigma", "theta", noiseRatio == null ? "f" : "f_noise"}; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | protected override string[] AllowedInputVariables { get { return new[] {"sigma", "theta"}; } }
|
---|
| 42 |
|
---|
| 43 | public int Seed { get; private set; }
|
---|
| 44 |
|
---|
| 45 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 46 | protected override int TrainingPartitionEnd { get { return trainingSamples; } }
|
---|
| 47 | protected override int TestPartitionStart { get { return trainingSamples; } }
|
---|
| 48 | protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
|
---|
| 49 |
|
---|
| 50 | protected override List<List<double>> GenerateValues() {
|
---|
| 51 | var rand = new MersenneTwister((uint) Seed);
|
---|
| 52 |
|
---|
| 53 | var data = new List<List<double>>();
|
---|
| 54 | var sigma = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 55 | var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 3).ToList();
|
---|
| 56 |
|
---|
| 57 | var f = new List<double>();
|
---|
| 58 |
|
---|
| 59 | data.Add(sigma);
|
---|
| 60 | data.Add(theta);
|
---|
| 61 | data.Add(f);
|
---|
| 62 |
|
---|
| 63 | for (var i = 0; i < sigma.Count; i++) {
|
---|
| 64 | var res = Math.Exp(-Math.Pow(theta[i] / sigma[i], 2) / 2) / (Math.Sqrt(2 * Math.PI) * sigma[i]);
|
---|
| 65 | f.Add(res);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | if (noiseRatio != null) {
|
---|
| 69 | var f_noise = new List<double>();
|
---|
[17805] | 70 | var sigma_noise = (double) Math.Sqrt(noiseRatio.Value) * f.StandardDeviationPop();
|
---|
[17647] | 71 | f_noise.AddRange(f.Select(md => md + NormalDistributedRandom.NextDouble(rand, 0, sigma_noise)));
|
---|
| 72 | data.Remove(f);
|
---|
| 73 | data.Add(f_noise);
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | return data;
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 | } |
---|