Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman17.cs

Last change on this file was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 2.9 KB
RevLine 
[17647]1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman17 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
[17966]12    public Feynman17() : this((int)DateTime.Now.Ticks, 10000, 10000, null) { }
[17647]13
14    public Feynman17(int seed) {
[17966]15      Seed = seed;
[17647]16      trainingSamples = 10000;
[17966]17      testSamples = 10000;
18      noiseRatio = null;
[17647]19    }
20
21    public Feynman17(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
[17966]22      Seed = seed;
[17647]23      this.trainingSamples = trainingSamples;
[17966]24      this.testSamples = testSamples;
25      this.noiseRatio = noiseRatio;
[17647]26    }
27
28    public override string Name {
29      get {
[17805]30        return string.Format("I.15.3x (x-u*t)/sqrt(1-u**2/c**2) | {0}",
[17966]31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}", noiseRatio));
[17647]32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "x1" : "x1_noise"; } }
36
37    protected override string[] VariableNames {
[17973]38      get { return noiseRatio == null ? new[] { "x", "u", "c", "t", "x1" } : new[] { "x", "u", "c", "t", "x1", "x1_noise" }; }
[17647]39    }
40
[17966]41    protected override string[] AllowedInputVariables { get { return new[] { "x", "u", "c", "t" }; } }
[17647]42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
[17966]51      var rand = new MersenneTwister((uint)Seed);
[17647]52
53      var data = new List<List<double>>();
[17966]54      var x = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5, 10).ToList();
55      var u = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
56      var c = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3, 20).ToList();
57      var t = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 2).ToList();
[17647]58
59      var x1 = new List<double>();
60
61      data.Add(x);
62      data.Add(u);
63      data.Add(c);
64      data.Add(t);
65      data.Add(x1);
66
67      for (var i = 0; i < x.Count; i++) {
68        var res = (x[i] - u[i] * t[i]) / Math.Sqrt(1 - Math.Pow(u[i], 2) / Math.Pow(c[i], 2));
69        x1.Add(res);
70      }
71
[18032]72      var targetNoise = ValueGenerator.GenerateNoise(x1, rand, noiseRatio);
[17973]73      if (targetNoise != null) data.Add(targetNoise);
[17647]74
75      return data;
76    }
77  }
78}
Note: See TracBrowser for help on using the repository browser.