Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Feynman/Feynman12.cs @ 18106

Last change on this file since 18106 was 18032, checked in by chaider, 3 years ago

#3075 noise generation method to ValueGenerator; use same method for generating noise in friedman and feynman instances

File size: 3.1 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Random;
6
7namespace HeuristicLab.Problems.Instances.DataAnalysis {
8  public class Feynman12 : FeynmanDescriptor {
9    private readonly int testSamples;
10    private readonly int trainingSamples;
11
12    public Feynman12() : this((int) DateTime.Now.Ticks, 10000, 10000, null) { }
13
14    public Feynman12(int seed) {
15      Seed            = seed;
16      trainingSamples = 10000;
17      testSamples     = 10000;
18      noiseRatio      = null;
19    }
20
21    public Feynman12(int seed, int trainingSamples, int testSamples, double? noiseRatio) {
22      Seed                 = seed;
23      this.trainingSamples = trainingSamples;
24      this.testSamples     = testSamples;
25      this.noiseRatio      = noiseRatio;
26    }
27
28    public override string Name {
29      get {
30        return string.Format("I.12.11 q*(Ef + B*v*sin(theta)) | {0}",
31          noiseRatio == null ? "no noise" : string.Format(System.Globalization.CultureInfo.InvariantCulture, "noise={0:g}",noiseRatio));
32      }
33    }
34
35    protected override string TargetVariable { get { return noiseRatio == null ? "F" : "F_noise"; } }
36
37    protected override string[] VariableNames {
38      get { return noiseRatio == null ? new[] { "q", "Ef", "B", "v", "theta", "F" } : new[] { "q", "Ef", "B", "v", "theta", "F", "F_noise" }; }
39    }
40
41    protected override string[] AllowedInputVariables { get { return new[] {"q", "Ef", "B", "v", "theta"}; } }
42
43    public int Seed { get; private set; }
44
45    protected override int TrainingPartitionStart { get { return 0; } }
46    protected override int TrainingPartitionEnd { get { return trainingSamples; } }
47    protected override int TestPartitionStart { get { return trainingSamples; } }
48    protected override int TestPartitionEnd { get { return trainingSamples + testSamples; } }
49
50    protected override List<List<double>> GenerateValues() {
51      var rand = new MersenneTwister((uint) Seed);
52
53      var data  = new List<List<double>>();
54      var q     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
55      var Ef    = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
56      var B     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
57      var v     = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
58      var theta = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1, 5).ToList();
59
60      var F = new List<double>();
61
62      data.Add(q);
63      data.Add(Ef);
64      data.Add(B);
65      data.Add(v);
66      data.Add(theta);
67      data.Add(F);
68
69      for (var i = 0; i < q.Count; i++) {
70        var res = q[i] * (Ef[i] + B[i] * v[i] * Math.Sin(theta[i]));
71        F.Add(res);
72      }
73
74      var targetNoise = ValueGenerator.GenerateNoise(F, rand, noiseRatio);
75      if (targetNoise != null) data.Add(targetNoise);
76
77      return data;
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.