Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/FeatureSelection/FeatureSelectionInstanceProvider.cs @ 17956

Last change on this file since 17956 was 17180, checked in by swagner, 5 years ago

#2875: Removed years in copyrights

File size: 3.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Problems.DataAnalysis;
26using HeuristicLab.Random;
27
28namespace HeuristicLab.Problems.Instances.DataAnalysis {
29  public class FeatureSelectionInstanceProvider : ArtificialRegressionInstanceProvider {
30    public override string Name {
31      get { return "Feature Selection Problems"; }
32    }
33    public override string Description {
34      get { return "A set of artificial feature selection benchmark problems"; }
35    }
36    public override Uri WebLink {
37      get { return new Uri("http://dev.heuristiclab.com"); }
38    }
39    public override string ReferencePublication {
40      get { return ""; }
41    }
42    public int Seed { get; private set; }
43
44    public FeatureSelectionInstanceProvider() : base() {
45      Seed = (int)DateTime.Now.Ticks;
46    }
47
48    public FeatureSelectionInstanceProvider(int seed) : base() {
49      Seed = seed;
50    }
51
52
53    public override IEnumerable<IDataDescriptor> GetDataDescriptors() {
54      var sizes = new int[] { 50, 100, 200 };
55      var pp = new double[] { 0.1, 0.25, 0.5 };
56      var noiseRatios = new double[] { 0.01, 0.05, 0.1, 0.2 };
57      var rand = new MersenneTwister((uint)Seed); // use fixed seed for deterministic problem generation
58
59      return (from size in sizes
60              from p in pp
61              from noiseRatio in noiseRatios
62              let instanceSeed = rand.Next()
63              let mt = new MersenneTwister((uint)instanceSeed)
64              let xGenerator = new NormalDistributedRandom(mt, 0, 1)
65              let weightGenerator = new UniformDistributedRandom(mt, 0, 10)
66              select new FeatureSelection(size, p, noiseRatio, xGenerator, weightGenerator))
67              .Cast<IDataDescriptor>()
68              .ToList();
69    }
70
71    public override IRegressionProblemData LoadData(IDataDescriptor descriptor) {
72      var featureSelectionDescriptor = descriptor as FeatureSelection;
73      if (featureSelectionDescriptor == null) throw new ArgumentException("FeatureSelectionInstanceProvider expects an FeatureSelection data descriptor.");
74      // base call generates a regression problem data
75      var regProblemData = base.LoadData(featureSelectionDescriptor);
76      var problemData =
77        new FeatureSelectionRegressionProblemData(
78          regProblemData.Dataset, regProblemData.AllowedInputVariables, regProblemData.TargetVariable,
79          featureSelectionDescriptor.SelectedFeatures, featureSelectionDescriptor.Weights,
80          featureSelectionDescriptor.OptimalRSquared);
81
82      // copy values from regProblemData to feature selection problem data
83      problemData.Name = regProblemData.Name;
84      problemData.Description = regProblemData.Description;
85      problemData.TrainingPartition.Start = regProblemData.TrainingPartition.Start;
86      problemData.TrainingPartition.End = regProblemData.TrainingPartition.End;
87      problemData.TestPartition.Start = regProblemData.TestPartition.Start;
88      problemData.TestPartition.End = regProblemData.TestPartition.End;
89
90      return problemData;
91    }
92  }
93}
Note: See TracBrowser for help on using the repository browser.