Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/TimeSeriesPrognosis/Models/TimeSeriesPrognosisAutoRegressiveModel.cs @ 18242

Last change on this file since 18242 was 17180, checked in by swagner, 5 years ago

#2875: Removed years in copyrights

File size: 4.6 KB
RevLine 
[8010]1#region License Information
2/* HeuristicLab
[17180]3 * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8010]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
[8486]24using System.Linq;
[8010]25using HeuristicLab.Common;
26using HeuristicLab.Core;
[16565]27using HEAL.Attic;
[8010]28
29namespace HeuristicLab.Problems.DataAnalysis {
[16565]30  [StorableType("9C44E097-50F8-4EC1-BE1B-6A0246EC020E")]
[8010]31  [Item("Autoregressive TimeSeries Model", "A linear autoregressive time series model used to predict future values.")]
[13941]32  public class TimeSeriesPrognosisAutoRegressiveModel : RegressionModel, ITimeSeriesPrognosisModel {
33    public override IEnumerable<string> VariablesUsedForPrediction {
[13993]34      get { return new[] { TargetVariable }; }
[13921]35    }
36
[8010]37    [Storable]
[8430]38    public double[] Phi { get; private set; }
[8010]39    [Storable]
[8430]40    public double Constant { get; private set; }
[8010]41
[8468]42    public int TimeOffset { get { return Phi.Length; } }
43
[8010]44    [StorableConstructor]
[16565]45    protected TimeSeriesPrognosisAutoRegressiveModel(StorableConstructorFlag _) : base(_) { }
[8010]46    protected TimeSeriesPrognosisAutoRegressiveModel(TimeSeriesPrognosisAutoRegressiveModel original, Cloner cloner)
47      : base(original, cloner) {
[8430]48      this.Phi = (double[])original.Phi.Clone();
49      this.Constant = original.Constant;
[8010]50    }
51    public override IDeepCloneable Clone(Cloner cloner) {
52      return new TimeSeriesPrognosisAutoRegressiveModel(this, cloner);
53    }
[8468]54    public TimeSeriesPrognosisAutoRegressiveModel(string targetVariable, double[] phi, double constant)
[13941]55      : base(targetVariable, "AR(1) Model") {
[8468]56      Phi = (double[])phi.Clone();
57      Constant = constant;
[8010]58    }
59
[12509]60    public IEnumerable<IEnumerable<double>> GetPrognosedValues(IDataset dataset, IEnumerable<int> rows, IEnumerable<int> horizons) {
[8010]61      var rowsEnumerator = rows.GetEnumerator();
62      var horizonsEnumerator = horizons.GetEnumerator();
[8468]63      var targetValues = dataset.GetReadOnlyDoubleValues(TargetVariable);
[8010]64      // produce a n-step forecast for all rows
65      while (rowsEnumerator.MoveNext() & horizonsEnumerator.MoveNext()) {
66        int row = rowsEnumerator.Current;
67        int horizon = horizonsEnumerator.Current;
[8486]68        if (row - TimeOffset < 0) {
69          yield return Enumerable.Repeat(double.NaN, horizon);
70          continue;
71        }
72
[8010]73        double[] prognosis = new double[horizon];
[8468]74        for (int h = 0; h < horizon; h++) {
75          double estimatedValue = 0.0;
[8486]76          for (int i = 1; i <= TimeOffset; i++) {
[8468]77            int offset = h - i;
78            if (offset >= 0) estimatedValue += prognosis[offset] * Phi[i - 1];
79            else estimatedValue += targetValues[row + offset] * Phi[i - 1];
80
81          }
82          estimatedValue += Constant;
83          prognosis[h] = estimatedValue;
84        }
85
[8010]86        yield return prognosis;
87      }
88
89      if (rowsEnumerator.MoveNext() || horizonsEnumerator.MoveNext())
90        throw new ArgumentException("Number of elements in rows and horizon enumerations doesn't match.");
91    }
92
[13941]93    public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
[8468]94      var targetVariables = dataset.GetReadOnlyDoubleValues(TargetVariable);
95      foreach (int row in rows) {
96        double estimatedValue = 0.0;
[8486]97        if (row - TimeOffset < 0) {
98          yield return double.NaN;
99          continue;
100        }
101
[8468]102        for (int i = 1; i <= TimeOffset; i++) {
103          estimatedValue += targetVariables[row - i] * Phi[i - 1];
104        }
105        estimatedValue += Constant;
106        yield return estimatedValue;
107      }
[8458]108    }
109
[8010]110    public ITimeSeriesPrognosisSolution CreateTimeSeriesPrognosisSolution(ITimeSeriesPrognosisProblemData problemData) {
[8857]111      return new TimeSeriesPrognosisSolution(this, new TimeSeriesPrognosisProblemData(problemData));
[8010]112    }
[13941]113    public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
[8458]114      throw new NotSupportedException();
115    }
[8010]116
117  }
118}
Note: See TracBrowser for help on using the repository browser.