[13766] | 1 | #region License Information
|
---|
| 2 |
|
---|
| 3 | /* HeuristicLab
|
---|
[17180] | 4 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[13766] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #endregion
|
---|
| 23 |
|
---|
| 24 | using System;
|
---|
[16422] | 25 | using System.Collections;
|
---|
[13766] | 26 | using System.Collections.Generic;
|
---|
| 27 | using System.Linq;
|
---|
| 28 | using HeuristicLab.Common;
|
---|
| 29 | using HeuristicLab.Core;
|
---|
| 30 | using HeuristicLab.Data;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
[16565] | 32 | using HEAL.Attic;
|
---|
[13986] | 33 | using HeuristicLab.Random;
|
---|
[13766] | 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
[16565] | 36 | [StorableType("414B25CD-6643-4E42-9EB2-B9A24F5E1528")]
|
---|
[13985] | 37 | [Item("RegressionSolution Impacts Calculator", "Calculation of the impacts of input variables for any regression solution")]
|
---|
[13766] | 38 | public sealed class RegressionSolutionVariableImpactsCalculator : ParameterizedNamedItem {
|
---|
[16422] | 39 | #region Parameters/Properties
|
---|
[16565] | 40 | [StorableType("45a48ef7-e1e6-44b7-95b1-ae9d01aa5de4")]
|
---|
[13766] | 41 | public enum ReplacementMethodEnum {
|
---|
| 42 | Median,
|
---|
[13986] | 43 | Average,
|
---|
| 44 | Shuffle,
|
---|
| 45 | Noise
|
---|
[13766] | 46 | }
|
---|
[16565] | 47 |
|
---|
| 48 | [StorableType("78df33f8-4715-4d25-a69a-f2bc1277fa3b")]
|
---|
[14826] | 49 | public enum FactorReplacementMethodEnum {
|
---|
| 50 | Best,
|
---|
| 51 | Mode,
|
---|
| 52 | Shuffle
|
---|
| 53 | }
|
---|
[16565] | 54 |
|
---|
| 55 | [StorableType("946646da-1c0b-435e-88f9-38d649fc5194")]
|
---|
[13766] | 56 | public enum DataPartitionEnum {
|
---|
| 57 | Training,
|
---|
| 58 | Test,
|
---|
| 59 | All
|
---|
| 60 | }
|
---|
[15796] | 61 |
|
---|
[13766] | 62 | private const string ReplacementParameterName = "Replacement Method";
|
---|
[16422] | 63 | private const string FactorReplacementParameterName = "Factor Replacement Method";
|
---|
[13766] | 64 | private const string DataPartitionParameterName = "DataPartition";
|
---|
| 65 |
|
---|
| 66 | public IFixedValueParameter<EnumValue<ReplacementMethodEnum>> ReplacementParameter {
|
---|
| 67 | get { return (IFixedValueParameter<EnumValue<ReplacementMethodEnum>>)Parameters[ReplacementParameterName]; }
|
---|
| 68 | }
|
---|
[16422] | 69 | public IFixedValueParameter<EnumValue<FactorReplacementMethodEnum>> FactorReplacementParameter {
|
---|
| 70 | get { return (IFixedValueParameter<EnumValue<FactorReplacementMethodEnum>>)Parameters[FactorReplacementParameterName]; }
|
---|
| 71 | }
|
---|
[13766] | 72 | public IFixedValueParameter<EnumValue<DataPartitionEnum>> DataPartitionParameter {
|
---|
| 73 | get { return (IFixedValueParameter<EnumValue<DataPartitionEnum>>)Parameters[DataPartitionParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public ReplacementMethodEnum ReplacementMethod {
|
---|
| 77 | get { return ReplacementParameter.Value.Value; }
|
---|
| 78 | set { ReplacementParameter.Value.Value = value; }
|
---|
| 79 | }
|
---|
[16422] | 80 | public FactorReplacementMethodEnum FactorReplacementMethod {
|
---|
| 81 | get { return FactorReplacementParameter.Value.Value; }
|
---|
| 82 | set { FactorReplacementParameter.Value.Value = value; }
|
---|
| 83 | }
|
---|
[13766] | 84 | public DataPartitionEnum DataPartition {
|
---|
| 85 | get { return DataPartitionParameter.Value.Value; }
|
---|
| 86 | set { DataPartitionParameter.Value.Value = value; }
|
---|
| 87 | }
|
---|
[16422] | 88 | #endregion
|
---|
[13766] | 89 |
|
---|
[16422] | 90 | #region Ctor/Cloner
|
---|
[13766] | 91 | [StorableConstructor]
|
---|
[16565] | 92 | private RegressionSolutionVariableImpactsCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
[13766] | 93 | private RegressionSolutionVariableImpactsCalculator(RegressionSolutionVariableImpactsCalculator original, Cloner cloner)
|
---|
| 94 | : base(original, cloner) { }
|
---|
| 95 | public RegressionSolutionVariableImpactsCalculator()
|
---|
| 96 | : base() {
|
---|
[16422] | 97 | Parameters.Add(new FixedValueParameter<EnumValue<ReplacementMethodEnum>>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue<ReplacementMethodEnum>(ReplacementMethodEnum.Shuffle)));
|
---|
| 98 | Parameters.Add(new FixedValueParameter<EnumValue<FactorReplacementMethodEnum>>(FactorReplacementParameterName, "The replacement method for factor variables during impact calculation.", new EnumValue<FactorReplacementMethodEnum>(FactorReplacementMethodEnum.Best)));
|
---|
[13985] | 99 | Parameters.Add(new FixedValueParameter<EnumValue<DataPartitionEnum>>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue<DataPartitionEnum>(DataPartitionEnum.Training)));
|
---|
[13766] | 100 | }
|
---|
| 101 |
|
---|
[16422] | 102 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 103 | return new RegressionSolutionVariableImpactsCalculator(this, cloner);
|
---|
| 104 | }
|
---|
| 105 | #endregion
|
---|
| 106 |
|
---|
[13766] | 107 | //mkommend: annoying name clash with static method, open to better naming suggestions
|
---|
| 108 | public IEnumerable<Tuple<string, double>> Calculate(IRegressionSolution solution) {
|
---|
[16422] | 109 | return CalculateImpacts(solution, ReplacementMethod, FactorReplacementMethod, DataPartition);
|
---|
[13766] | 110 | }
|
---|
| 111 |
|
---|
[14826] | 112 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
| 113 | IRegressionSolution solution,
|
---|
[16422] | 114 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
[15798] | 115 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best,
|
---|
[16422] | 116 | DataPartitionEnum dataPartition = DataPartitionEnum.Training) {
|
---|
[13766] | 117 |
|
---|
[16422] | 118 | IEnumerable<int> rows = GetPartitionRows(dataPartition, solution.ProblemData);
|
---|
| 119 | IEnumerable<double> estimatedValues = solution.GetEstimatedValues(rows);
|
---|
| 120 | return CalculateImpacts(solution.Model, solution.ProblemData, estimatedValues, rows, replacementMethod, factorReplacementMethod);
|
---|
| 121 | }
|
---|
[13766] | 122 |
|
---|
[16422] | 123 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
| 124 | IRegressionModel model,
|
---|
| 125 | IRegressionProblemData problemData,
|
---|
| 126 | IEnumerable<double> estimatedValues,
|
---|
| 127 | IEnumerable<int> rows,
|
---|
| 128 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 129 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
[13766] | 130 |
|
---|
[16422] | 131 | //fholzing: try and catch in case a different dataset is loaded, otherwise statement is neglectable
|
---|
| 132 | var missingVariables = model.VariablesUsedForPrediction.Except(problemData.Dataset.VariableNames);
|
---|
| 133 | if (missingVariables.Any()) {
|
---|
| 134 | throw new InvalidOperationException(string.Format("Can not calculate variable impacts, because the model uses inputs missing in the dataset ({0})", string.Join(", ", missingVariables)));
|
---|
[13766] | 135 | }
|
---|
[16422] | 136 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 137 | var originalQuality = CalculateQuality(targetValues, estimatedValues);
|
---|
[13766] | 138 |
|
---|
| 139 | var impacts = new Dictionary<string, double>();
|
---|
[16422] | 140 | var inputvariables = new HashSet<string>(problemData.AllowedInputVariables.Union(model.VariablesUsedForPrediction));
|
---|
| 141 | var modifiableDataset = ((Dataset)(problemData.Dataset).Clone()).ToModifiable();
|
---|
[13766] | 142 |
|
---|
[16422] | 143 | foreach (var inputVariable in inputvariables) {
|
---|
| 144 | impacts[inputVariable] = CalculateImpact(inputVariable, model, problemData, modifiableDataset, rows, replacementMethod, factorReplacementMethod, targetValues, originalQuality);
|
---|
| 145 | }
|
---|
[14463] | 146 |
|
---|
[16422] | 147 | return impacts.Select(i => Tuple.Create(i.Key, i.Value));
|
---|
| 148 | }
|
---|
[13766] | 149 |
|
---|
[16422] | 150 | public static double CalculateImpact(string variableName,
|
---|
| 151 | IRegressionModel model,
|
---|
| 152 | IRegressionProblemData problemData,
|
---|
| 153 | ModifiableDataset modifiableDataset,
|
---|
| 154 | IEnumerable<int> rows,
|
---|
| 155 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 156 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best,
|
---|
| 157 | IEnumerable<double> targetValues = null,
|
---|
| 158 | double quality = double.NaN) {
|
---|
| 159 |
|
---|
| 160 | if (!model.VariablesUsedForPrediction.Contains(variableName)) { return 0.0; }
|
---|
| 161 | if (!problemData.Dataset.VariableNames.Contains(variableName)) {
|
---|
| 162 | throw new InvalidOperationException(string.Format("Can not calculate variable impact, because the model uses inputs missing in the dataset ({0})", variableName));
|
---|
[13766] | 163 | }
|
---|
[14826] | 164 |
|
---|
[16422] | 165 | if (targetValues == null) {
|
---|
| 166 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 167 | }
|
---|
| 168 | if (quality == double.NaN) {
|
---|
| 169 | quality = CalculateQuality(model.GetEstimatedValues(modifiableDataset, rows), targetValues);
|
---|
| 170 | }
|
---|
[14826] | 171 |
|
---|
[16422] | 172 | IList originalValues = null;
|
---|
| 173 | IList replacementValues = GetReplacementValues(modifiableDataset, variableName, model, rows, targetValues, out originalValues, replacementMethod, factorReplacementMethod);
|
---|
[14826] | 174 |
|
---|
[16422] | 175 | double newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, replacementValues, targetValues);
|
---|
| 176 | double impact = quality - newValue;
|
---|
[14826] | 177 |
|
---|
[16422] | 178 | return impact;
|
---|
[13766] | 179 | }
|
---|
| 180 |
|
---|
[16422] | 181 | private static IList GetReplacementValues(ModifiableDataset modifiableDataset,
|
---|
| 182 | string variableName,
|
---|
| 183 | IRegressionModel model,
|
---|
| 184 | IEnumerable<int> rows,
|
---|
| 185 | IEnumerable<double> targetValues,
|
---|
| 186 | out IList originalValues,
|
---|
| 187 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 188 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
[15796] | 189 |
|
---|
[16422] | 190 | IList replacementValues = null;
|
---|
| 191 | if (modifiableDataset.VariableHasType<double>(variableName)) {
|
---|
| 192 | originalValues = modifiableDataset.GetReadOnlyDoubleValues(variableName).ToList();
|
---|
| 193 | replacementValues = GetReplacementValuesForDouble(modifiableDataset, rows, (List<double>)originalValues, replacementMethod);
|
---|
| 194 | } else if (modifiableDataset.VariableHasType<string>(variableName)) {
|
---|
| 195 | originalValues = modifiableDataset.GetReadOnlyStringValues(variableName).ToList();
|
---|
| 196 | replacementValues = GetReplacementValuesForString(model, modifiableDataset, variableName, rows, (List<string>)originalValues, targetValues, factorReplacementMethod);
|
---|
| 197 | } else {
|
---|
| 198 | throw new NotSupportedException("Variable not supported");
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | return replacementValues;
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | private static IList GetReplacementValuesForDouble(ModifiableDataset modifiableDataset,
|
---|
| 205 | IEnumerable<int> rows,
|
---|
| 206 | List<double> originalValues,
|
---|
| 207 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle) {
|
---|
| 208 |
|
---|
| 209 | IRandom random = new FastRandom(31415);
|
---|
| 210 | List<double> replacementValues;
|
---|
[13766] | 211 | double replacementValue;
|
---|
| 212 |
|
---|
[16422] | 213 | switch (replacementMethod) {
|
---|
[13766] | 214 | case ReplacementMethodEnum.Median:
|
---|
| 215 | replacementValue = rows.Select(r => originalValues[r]).Median();
|
---|
[16422] | 216 | replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList();
|
---|
[13766] | 217 | break;
|
---|
| 218 | case ReplacementMethodEnum.Average:
|
---|
| 219 | replacementValue = rows.Select(r => originalValues[r]).Average();
|
---|
[16422] | 220 | replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList();
|
---|
[13766] | 221 | break;
|
---|
[13986] | 222 | case ReplacementMethodEnum.Shuffle:
|
---|
| 223 | // new var has same empirical distribution but the relation to y is broken
|
---|
[14348] | 224 | // prepare a complete column for the dataset
|
---|
[16422] | 225 | replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList();
|
---|
[14348] | 226 | // shuffle only the selected rows
|
---|
[16422] | 227 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList();
|
---|
[14348] | 228 | int i = 0;
|
---|
| 229 | // update column values
|
---|
| 230 | foreach (var r in rows) {
|
---|
| 231 | replacementValues[r] = shuffledValues[i++];
|
---|
| 232 | }
|
---|
[13986] | 233 | break;
|
---|
| 234 | case ReplacementMethodEnum.Noise:
|
---|
| 235 | var avg = rows.Select(r => originalValues[r]).Average();
|
---|
| 236 | var stdDev = rows.Select(r => originalValues[r]).StandardDeviation();
|
---|
[14348] | 237 | // prepare a complete column for the dataset
|
---|
[16422] | 238 | replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList();
|
---|
[14348] | 239 | // update column values
|
---|
| 240 | foreach (var r in rows) {
|
---|
[16422] | 241 | replacementValues[r] = NormalDistributedRandom.NextDouble(random, avg, stdDev);
|
---|
[14348] | 242 | }
|
---|
[13986] | 243 | break;
|
---|
| 244 |
|
---|
[13766] | 245 | default:
|
---|
[16422] | 246 | throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacementMethod));
|
---|
[13766] | 247 | }
|
---|
| 248 |
|
---|
[16422] | 249 | return replacementValues;
|
---|
[14826] | 250 | }
|
---|
| 251 |
|
---|
[16422] | 252 | private static IList GetReplacementValuesForString(IRegressionModel model,
|
---|
| 253 | ModifiableDataset modifiableDataset,
|
---|
| 254 | string variableName,
|
---|
[14826] | 255 | IEnumerable<int> rows,
|
---|
[16422] | 256 | List<string> originalValues,
|
---|
| 257 | IEnumerable<double> targetValues,
|
---|
| 258 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Shuffle) {
|
---|
[14826] | 259 |
|
---|
[16422] | 260 | List<string> replacementValues = null;
|
---|
| 261 | IRandom random = new FastRandom(31415);
|
---|
| 262 |
|
---|
| 263 | switch (factorReplacementMethod) {
|
---|
| 264 | case FactorReplacementMethodEnum.Best:
|
---|
| 265 | // try replacing with all possible values and find the best replacement value
|
---|
| 266 | var bestQuality = double.NegativeInfinity;
|
---|
| 267 | foreach (var repl in modifiableDataset.GetStringValues(variableName, rows).Distinct()) {
|
---|
| 268 | List<string> curReplacementValues = Enumerable.Repeat(repl, modifiableDataset.Rows).ToList();
|
---|
| 269 | //fholzing: this result could be used later on (theoretically), but is neglected for better readability/method consistency
|
---|
| 270 | var newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, curReplacementValues, targetValues);
|
---|
| 271 | var curQuality = newValue;
|
---|
| 272 |
|
---|
| 273 | if (curQuality > bestQuality) {
|
---|
| 274 | bestQuality = curQuality;
|
---|
| 275 | replacementValues = curReplacementValues;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | break;
|
---|
[14826] | 279 | case FactorReplacementMethodEnum.Mode:
|
---|
| 280 | var mostCommonValue = rows.Select(r => originalValues[r])
|
---|
| 281 | .GroupBy(v => v)
|
---|
| 282 | .OrderByDescending(g => g.Count())
|
---|
| 283 | .First().Key;
|
---|
[16422] | 284 | replacementValues = Enumerable.Repeat(mostCommonValue, modifiableDataset.Rows).ToList();
|
---|
[14826] | 285 | break;
|
---|
| 286 | case FactorReplacementMethodEnum.Shuffle:
|
---|
| 287 | // new var has same empirical distribution but the relation to y is broken
|
---|
| 288 | // prepare a complete column for the dataset
|
---|
[16422] | 289 | replacementValues = Enumerable.Repeat(string.Empty, modifiableDataset.Rows).ToList();
|
---|
[14826] | 290 | // shuffle only the selected rows
|
---|
[16422] | 291 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList();
|
---|
[14826] | 292 | int i = 0;
|
---|
| 293 | // update column values
|
---|
| 294 | foreach (var r in rows) {
|
---|
| 295 | replacementValues[r] = shuffledValues[i++];
|
---|
| 296 | }
|
---|
| 297 | break;
|
---|
| 298 | default:
|
---|
[16422] | 299 | throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", factorReplacementMethod));
|
---|
[14826] | 300 | }
|
---|
| 301 |
|
---|
[16422] | 302 | return replacementValues;
|
---|
[14826] | 303 | }
|
---|
| 304 |
|
---|
[16422] | 305 | private static double CalculateQualityForReplacement(
|
---|
| 306 | IRegressionModel model,
|
---|
| 307 | ModifiableDataset modifiableDataset,
|
---|
| 308 | string variableName,
|
---|
| 309 | IList originalValues,
|
---|
| 310 | IEnumerable<int> rows,
|
---|
| 311 | IList replacementValues,
|
---|
| 312 | IEnumerable<double> targetValues) {
|
---|
| 313 |
|
---|
| 314 | modifiableDataset.ReplaceVariable(variableName, replacementValues);
|
---|
[13766] | 315 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
[16422] | 316 | var estimates = model.GetEstimatedValues(modifiableDataset, rows).ToList();
|
---|
| 317 | var ret = CalculateQuality(targetValues, estimates);
|
---|
| 318 | modifiableDataset.ReplaceVariable(variableName, originalValues);
|
---|
[13766] | 319 |
|
---|
[16422] | 320 | return ret;
|
---|
[13766] | 321 | }
|
---|
[14826] | 322 |
|
---|
[16422] | 323 | public static double CalculateQuality(IEnumerable<double> targetValues, IEnumerable<double> estimatedValues) {
|
---|
| 324 | OnlineCalculatorError errorState;
|
---|
| 325 | var ret = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
| 326 | if (errorState != OnlineCalculatorError.None) { throw new InvalidOperationException("Error during calculation with replaced inputs."); }
|
---|
| 327 | return ret * ret;
|
---|
[14826] | 328 | }
|
---|
[16422] | 329 |
|
---|
| 330 | public static IEnumerable<int> GetPartitionRows(DataPartitionEnum dataPartition, IRegressionProblemData problemData) {
|
---|
| 331 | IEnumerable<int> rows;
|
---|
| 332 |
|
---|
| 333 | switch (dataPartition) {
|
---|
| 334 | case DataPartitionEnum.All:
|
---|
| 335 | rows = problemData.AllIndices;
|
---|
| 336 | break;
|
---|
| 337 | case DataPartitionEnum.Test:
|
---|
| 338 | rows = problemData.TestIndices;
|
---|
| 339 | break;
|
---|
| 340 | case DataPartitionEnum.Training:
|
---|
| 341 | rows = problemData.TrainingIndices;
|
---|
| 342 | break;
|
---|
| 343 | default:
|
---|
| 344 | throw new NotSupportedException("DataPartition not supported");
|
---|
| 345 | }
|
---|
| 346 |
|
---|
| 347 | return rows;
|
---|
| 348 | }
|
---|
[13766] | 349 | }
|
---|
[16422] | 350 | } |
---|