1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HEAL.Attic;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a threshold calculator that calculates thresholds as the cutting points between the estimated class distributions (assuming normally distributed class values).
|
---|
32 | /// </summary>
|
---|
33 | [StorableType("D01CB5DC-606B-4CE9-B293-2D4D80A70BB8")]
|
---|
34 | [Item("NormalDistributionCutPointsThresholdCalculator", "Represents a threshold calculator that calculates thresholds as the cutting points between the estimated class distributions (assuming normally distributed class values).")]
|
---|
35 | public class NormalDistributionCutPointsThresholdCalculator : ThresholdCalculator {
|
---|
36 |
|
---|
37 | [StorableConstructor]
|
---|
38 | protected NormalDistributionCutPointsThresholdCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
39 | protected NormalDistributionCutPointsThresholdCalculator(NormalDistributionCutPointsThresholdCalculator original, Cloner cloner)
|
---|
40 | : base(original, cloner) {
|
---|
41 | }
|
---|
42 | public NormalDistributionCutPointsThresholdCalculator()
|
---|
43 | : base() {
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
47 | return new NormalDistributionCutPointsThresholdCalculator(this, cloner);
|
---|
48 | }
|
---|
49 |
|
---|
50 | public override void Calculate(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
51 | NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(problemData, estimatedValues, targetClassValues, out classValues, out thresholds);
|
---|
52 | }
|
---|
53 |
|
---|
54 | public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
55 | var estimatedTargetValues = Enumerable.Zip(estimatedValues, targetClassValues, (e, t) => new { EstimatedValue = e, TargetValue = t }).ToList();
|
---|
56 | double estimatedValuesRange = estimatedValues.Range();
|
---|
57 |
|
---|
58 | Dictionary<double, double> classMean = new Dictionary<double, double>();
|
---|
59 | Dictionary<double, double> classStdDev = new Dictionary<double, double>();
|
---|
60 | // calculate moments per class
|
---|
61 | foreach (var group in estimatedTargetValues.GroupBy(p => p.TargetValue)) {
|
---|
62 | IEnumerable<double> estimatedClassValues = group.Select(x => x.EstimatedValue);
|
---|
63 | double classValue = group.Key;
|
---|
64 | double mean, variance;
|
---|
65 | OnlineCalculatorError meanErrorState, varianceErrorState;
|
---|
66 | OnlineMeanAndVarianceCalculator.Calculate(estimatedClassValues, out mean, out variance, out meanErrorState, out varianceErrorState);
|
---|
67 |
|
---|
68 | if (meanErrorState == OnlineCalculatorError.None && varianceErrorState == OnlineCalculatorError.None) {
|
---|
69 | classMean[classValue] = mean;
|
---|
70 | classStdDev[classValue] = Math.Sqrt(variance);
|
---|
71 | }
|
---|
72 | }
|
---|
73 |
|
---|
74 | double[] originalClasses = classMean.Keys.OrderBy(x => x).ToArray();
|
---|
75 | int nClasses = originalClasses.Length;
|
---|
76 | List<double> thresholdList = new List<double>();
|
---|
77 | for (int i = 0; i < nClasses - 1; i++) {
|
---|
78 | for (int j = i + 1; j < nClasses; j++) {
|
---|
79 | double x1, x2;
|
---|
80 | double class0 = originalClasses[i];
|
---|
81 | double class1 = originalClasses[j];
|
---|
82 | // calculate all thresholds
|
---|
83 | CalculateCutPoints(classMean[class0], classStdDev[class0], classMean[class1], classStdDev[class1], out x1, out x2);
|
---|
84 |
|
---|
85 | // if the two cut points are too close (for instance because the stdDev=0)
|
---|
86 | // then move them by 0.1% of the range of estimated values
|
---|
87 | if (x1.IsAlmost(x2)) {
|
---|
88 | x1 -= 0.001 * estimatedValuesRange;
|
---|
89 | x2 += 0.001 * estimatedValuesRange;
|
---|
90 | }
|
---|
91 | if (!double.IsInfinity(x1) && !thresholdList.Any(x => x.IsAlmost(x1))) thresholdList.Add(x1);
|
---|
92 | if (!double.IsInfinity(x2) && !thresholdList.Any(x => x.IsAlmost(x2))) thresholdList.Add(x2);
|
---|
93 | }
|
---|
94 | }
|
---|
95 | thresholdList.Sort();
|
---|
96 |
|
---|
97 | // add small value and large value for the calculation of most influential class in each thresholded section
|
---|
98 | thresholdList.Insert(0, double.NegativeInfinity);
|
---|
99 | thresholdList.Add(double.PositiveInfinity);
|
---|
100 |
|
---|
101 |
|
---|
102 | // find the most likely class for the points between thresholds m
|
---|
103 | List<double> filteredThresholds = new List<double>();
|
---|
104 | List<double> filteredClassValues = new List<double>();
|
---|
105 | for (int i = 0; i < thresholdList.Count - 1; i++) {
|
---|
106 | // determine class with maximal density mass between the thresholds
|
---|
107 | double maxDensity = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[originalClasses[0]], classStdDev[originalClasses[0]]);
|
---|
108 | double maxDensityClassValue = originalClasses[0];
|
---|
109 | foreach (var classValue in originalClasses.Skip(1)) {
|
---|
110 | double density = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[classValue], classStdDev[classValue]);
|
---|
111 | if (density > maxDensity) {
|
---|
112 | maxDensity = density;
|
---|
113 | maxDensityClassValue = classValue;
|
---|
114 | }
|
---|
115 | }
|
---|
116 | if (maxDensity > double.NegativeInfinity &&
|
---|
117 | (filteredClassValues.Count == 0 || !maxDensityClassValue.IsAlmost(filteredClassValues.Last()))) {
|
---|
118 | filteredThresholds.Add(thresholdList[i]);
|
---|
119 | filteredClassValues.Add(maxDensityClassValue);
|
---|
120 | }
|
---|
121 | }
|
---|
122 |
|
---|
123 | if (filteredThresholds.Count == 0 || !double.IsNegativeInfinity(filteredThresholds.First())) {
|
---|
124 | // this happens if there are no thresholds (distributions for all classes are exactly the same)
|
---|
125 | // or when the CDF up to the first threshold is zero
|
---|
126 | // -> all samples should be classified as the class with the most observations
|
---|
127 | // group observations by target class and select the class with largest count
|
---|
128 | double mostFrequentClass = targetClassValues.GroupBy(c => c)
|
---|
129 | .OrderBy(g => g.Count())
|
---|
130 | .Last().Key;
|
---|
131 | filteredThresholds.Insert(0, double.NegativeInfinity);
|
---|
132 | filteredClassValues.Insert(0, mostFrequentClass);
|
---|
133 | }
|
---|
134 |
|
---|
135 | thresholds = filteredThresholds.ToArray();
|
---|
136 | classValues = filteredClassValues.ToArray();
|
---|
137 | }
|
---|
138 |
|
---|
139 | private static double sqr2 = Math.Sqrt(2.0);
|
---|
140 | // returns the density function of the standard normal distribution at x
|
---|
141 | private static double NormalCDF(double x) {
|
---|
142 | return 0.5 * (1 + alglib.errorfunction(x / sqr2));
|
---|
143 | }
|
---|
144 |
|
---|
145 | // approximation of the log of the normal cummulative distribution from the lightspeed toolbox by Tom Minka
|
---|
146 | // http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
|
---|
147 | private static double[] c = new double[] { -1, 5 / 2.0, -37 / 3.0, 353 / 4.0, -4081 / 5.0, 55205 / 6.0, -854197 / 7.0 };
|
---|
148 | private static double LogNormalCDF(double x) {
|
---|
149 | if (x >= -6.5)
|
---|
150 | // calculate the log directly if x is large enough
|
---|
151 | return Math.Log(NormalCDF(x));
|
---|
152 | else {
|
---|
153 | double z = Math.Pow(x, -2);
|
---|
154 | // asymptotic series for logcdf
|
---|
155 | double y = z * (c[0] + z * (c[1] + z * (c[2] + z * (c[3] + z * (c[4] + z * (c[5] + z * c[6]))))));
|
---|
156 | return y - 0.5 * Math.Log(2 * Math.PI) - 0.5 * x * x - Math.Log(-x);
|
---|
157 | }
|
---|
158 | }
|
---|
159 |
|
---|
160 | // determines the value NormalCDF(mu,sigma, upper) - NormalCDF(mu, sigma, lower)
|
---|
161 | // = the integral of the PDF of N(mu, sigma) in the range [lower, upper]
|
---|
162 | private static double DensityMass(double lower, double upper, double mu, double sigma) {
|
---|
163 | if (sigma.IsAlmost(0.0)) {
|
---|
164 | if (lower < mu && mu < upper) return 0.0; // all mass is between lower and upper
|
---|
165 | else return double.NegativeInfinity; // no mass is between lower and upper
|
---|
166 | }
|
---|
167 |
|
---|
168 | if (lower > mu) {
|
---|
169 | return DensityMass(-upper, -lower, -mu, sigma);
|
---|
170 | }
|
---|
171 |
|
---|
172 | upper = (upper - mu) / sigma;
|
---|
173 | lower = (lower - mu) / sigma;
|
---|
174 | if (double.IsNegativeInfinity(lower)) return LogNormalCDF(upper);
|
---|
175 |
|
---|
176 | return LogNormalCDF(upper) + Math.Log(1 - Math.Exp(LogNormalCDF(lower) - LogNormalCDF(upper)));
|
---|
177 | }
|
---|
178 |
|
---|
179 | // Calculates the points x1 and x2 where the distributions N(m1, s1) == N(m2,s2).
|
---|
180 | // In the general case there should be two cut points. If either s1 or s2 is 0 then x1==x2.
|
---|
181 | // If both s1 and s2 are zero than there are no cut points but we should return something reasonable (e.g. (m1 + m2) / 2) then.
|
---|
182 | private static void CalculateCutPoints(double m1, double s1, double m2, double s2, out double x1, out double x2) {
|
---|
183 | if (s1.IsAlmost(s2)) {
|
---|
184 | if (m1.IsAlmost(m2)) {
|
---|
185 | x1 = double.NegativeInfinity;
|
---|
186 | x2 = double.NegativeInfinity;
|
---|
187 | } else {
|
---|
188 | // s1==s2 and m1 != m2
|
---|
189 | // return something reasonable. cut point should be half way between m1 and m2
|
---|
190 | x1 = (m1 + m2) / 2;
|
---|
191 | x2 = double.NegativeInfinity;
|
---|
192 | }
|
---|
193 | } else if (s1.IsAlmost(0.0)) {
|
---|
194 | // when s1 is 0.0 the cut points are exactly at m1 ...
|
---|
195 | x1 = m1;
|
---|
196 | x2 = m1;
|
---|
197 | } else if (s2.IsAlmost(0.0)) {
|
---|
198 | // ... same for s2
|
---|
199 | x1 = m2;
|
---|
200 | x2 = m2;
|
---|
201 | } else {
|
---|
202 | if (s2 < s1) {
|
---|
203 | // make sure s2 is the larger std.dev.
|
---|
204 | CalculateCutPoints(m2, s2, m1, s1, out x1, out x2);
|
---|
205 | } else {
|
---|
206 | // general case
|
---|
207 | // calculate the solutions x1, x2 where N(m1,s1) == N(m2,s2)
|
---|
208 | double g = Math.Sqrt(2 * s2 * s2 * Math.Log(s2 / s1) - 2 * s1 * s1 * Math.Log(s2 / s1) - 2 * m1 * m2 + m1 * m1 + m2 * m2);
|
---|
209 | double s = (s1 * s1 - s2 * s2);
|
---|
210 | x1 = (m2 * s1 * s1 - m1 * s2 * s2 + s1 * s2 * g) / s;
|
---|
211 | x2 = -(m1 * s2 * s2 - m2 * s1 * s1 + s1 * s2 * g) / s;
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|
215 | }
|
---|
216 | }
|
---|