[5681] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[17180] | 3 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5681] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[5777] | 22 | using System;
|
---|
[5681] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
[16565] | 27 | using HEAL.Attic;
|
---|
[5681] | 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// Represents a threshold calculator that calculates thresholds as the cutting points between the estimated class distributions (assuming normally distributed class values).
|
---|
| 32 | /// </summary>
|
---|
[16565] | 33 | [StorableType("D01CB5DC-606B-4CE9-B293-2D4D80A70BB8")]
|
---|
[5681] | 34 | [Item("NormalDistributionCutPointsThresholdCalculator", "Represents a threshold calculator that calculates thresholds as the cutting points between the estimated class distributions (assuming normally distributed class values).")]
|
---|
| 35 | public class NormalDistributionCutPointsThresholdCalculator : ThresholdCalculator {
|
---|
| 36 |
|
---|
| 37 | [StorableConstructor]
|
---|
[16565] | 38 | protected NormalDistributionCutPointsThresholdCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
[5681] | 39 | protected NormalDistributionCutPointsThresholdCalculator(NormalDistributionCutPointsThresholdCalculator original, Cloner cloner)
|
---|
| 40 | : base(original, cloner) {
|
---|
| 41 | }
|
---|
| 42 | public NormalDistributionCutPointsThresholdCalculator()
|
---|
| 43 | : base() {
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 47 | return new NormalDistributionCutPointsThresholdCalculator(this, cloner);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public override void Calculate(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
| 51 | NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(problemData, estimatedValues, targetClassValues, out classValues, out thresholds);
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public static void CalculateThresholds(IClassificationProblemData problemData, IEnumerable<double> estimatedValues, IEnumerable<double> targetClassValues, out double[] classValues, out double[] thresholds) {
|
---|
| 55 | var estimatedTargetValues = Enumerable.Zip(estimatedValues, targetClassValues, (e, t) => new { EstimatedValue = e, TargetValue = t }).ToList();
|
---|
[8638] | 56 | double estimatedValuesRange = estimatedValues.Range();
|
---|
[5681] | 57 |
|
---|
| 58 | Dictionary<double, double> classMean = new Dictionary<double, double>();
|
---|
| 59 | Dictionary<double, double> classStdDev = new Dictionary<double, double>();
|
---|
| 60 | // calculate moments per class
|
---|
| 61 | foreach (var group in estimatedTargetValues.GroupBy(p => p.TargetValue)) {
|
---|
| 62 | IEnumerable<double> estimatedClassValues = group.Select(x => x.EstimatedValue);
|
---|
| 63 | double classValue = group.Key;
|
---|
| 64 | double mean, variance;
|
---|
[5942] | 65 | OnlineCalculatorError meanErrorState, varianceErrorState;
|
---|
[5894] | 66 | OnlineMeanAndVarianceCalculator.Calculate(estimatedClassValues, out mean, out variance, out meanErrorState, out varianceErrorState);
|
---|
| 67 |
|
---|
[5942] | 68 | if (meanErrorState == OnlineCalculatorError.None && varianceErrorState == OnlineCalculatorError.None) {
|
---|
[5894] | 69 | classMean[classValue] = mean;
|
---|
| 70 | classStdDev[classValue] = Math.Sqrt(variance);
|
---|
| 71 | }
|
---|
[5681] | 72 | }
|
---|
[8921] | 73 |
|
---|
[5681] | 74 | double[] originalClasses = classMean.Keys.OrderBy(x => x).ToArray();
|
---|
| 75 | int nClasses = originalClasses.Length;
|
---|
| 76 | List<double> thresholdList = new List<double>();
|
---|
| 77 | for (int i = 0; i < nClasses - 1; i++) {
|
---|
| 78 | for (int j = i + 1; j < nClasses; j++) {
|
---|
| 79 | double x1, x2;
|
---|
| 80 | double class0 = originalClasses[i];
|
---|
| 81 | double class1 = originalClasses[j];
|
---|
| 82 | // calculate all thresholds
|
---|
| 83 | CalculateCutPoints(classMean[class0], classStdDev[class0], classMean[class1], classStdDev[class1], out x1, out x2);
|
---|
[8638] | 84 |
|
---|
| 85 | // if the two cut points are too close (for instance because the stdDev=0)
|
---|
| 86 | // then move them by 0.1% of the range of estimated values
|
---|
| 87 | if (x1.IsAlmost(x2)) {
|
---|
| 88 | x1 -= 0.001 * estimatedValuesRange;
|
---|
| 89 | x2 += 0.001 * estimatedValuesRange;
|
---|
| 90 | }
|
---|
| 91 | if (!double.IsInfinity(x1) && !thresholdList.Any(x => x.IsAlmost(x1))) thresholdList.Add(x1);
|
---|
| 92 | if (!double.IsInfinity(x2) && !thresholdList.Any(x => x.IsAlmost(x2))) thresholdList.Add(x2);
|
---|
[5681] | 93 | }
|
---|
| 94 | }
|
---|
| 95 | thresholdList.Sort();
|
---|
| 96 |
|
---|
[8658] | 97 | // add small value and large value for the calculation of most influential class in each thresholded section
|
---|
[8917] | 98 | thresholdList.Insert(0, double.NegativeInfinity);
|
---|
| 99 | thresholdList.Add(double.PositiveInfinity);
|
---|
[8658] | 100 |
|
---|
[8921] | 101 |
|
---|
| 102 | // find the most likely class for the points between thresholds m
|
---|
| 103 | List<double> filteredThresholds = new List<double>();
|
---|
| 104 | List<double> filteredClassValues = new List<double>();
|
---|
| 105 | for (int i = 0; i < thresholdList.Count - 1; i++) {
|
---|
| 106 | // determine class with maximal density mass between the thresholds
|
---|
| 107 | double maxDensity = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[originalClasses[0]], classStdDev[originalClasses[0]]);
|
---|
| 108 | double maxDensityClassValue = originalClasses[0];
|
---|
| 109 | foreach (var classValue in originalClasses.Skip(1)) {
|
---|
| 110 | double density = DensityMass(thresholdList[i], thresholdList[i + 1], classMean[classValue], classStdDev[classValue]);
|
---|
| 111 | if (density > maxDensity) {
|
---|
| 112 | maxDensity = density;
|
---|
| 113 | maxDensityClassValue = classValue;
|
---|
| 114 | }
|
---|
| 115 | }
|
---|
| 116 | if (maxDensity > double.NegativeInfinity &&
|
---|
| 117 | (filteredClassValues.Count == 0 || !maxDensityClassValue.IsAlmost(filteredClassValues.Last()))) {
|
---|
| 118 | filteredThresholds.Add(thresholdList[i]);
|
---|
| 119 | filteredClassValues.Add(maxDensityClassValue);
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | if (filteredThresholds.Count == 0 || !double.IsNegativeInfinity(filteredThresholds.First())) {
|
---|
[8638] | 124 | // this happens if there are no thresholds (distributions for all classes are exactly the same)
|
---|
[8921] | 125 | // or when the CDF up to the first threshold is zero
|
---|
[8913] | 126 | // -> all samples should be classified as the class with the most observations
|
---|
| 127 | // group observations by target class and select the class with largest count
|
---|
[8917] | 128 | double mostFrequentClass = targetClassValues.GroupBy(c => c)
|
---|
| 129 | .OrderBy(g => g.Count())
|
---|
| 130 | .Last().Key;
|
---|
[8921] | 131 | filteredThresholds.Insert(0, double.NegativeInfinity);
|
---|
| 132 | filteredClassValues.Insert(0, mostFrequentClass);
|
---|
| 133 | }
|
---|
[8917] | 134 |
|
---|
[8921] | 135 | thresholds = filteredThresholds.ToArray();
|
---|
| 136 | classValues = filteredClassValues.ToArray();
|
---|
[8917] | 137 | }
|
---|
[5681] | 138 |
|
---|
[8917] | 139 | private static double sqr2 = Math.Sqrt(2.0);
|
---|
| 140 | // returns the density function of the standard normal distribution at x
|
---|
| 141 | private static double NormalCDF(double x) {
|
---|
| 142 | return 0.5 * (1 + alglib.errorfunction(x / sqr2));
|
---|
| 143 | }
|
---|
[8658] | 144 |
|
---|
[8917] | 145 | // approximation of the log of the normal cummulative distribution from the lightspeed toolbox by Tom Minka
|
---|
| 146 | // http://research.microsoft.com/en-us/um/people/minka/software/lightspeed/
|
---|
| 147 | private static double[] c = new double[] { -1, 5 / 2.0, -37 / 3.0, 353 / 4.0, -4081 / 5.0, 55205 / 6.0, -854197 / 7.0 };
|
---|
| 148 | private static double LogNormalCDF(double x) {
|
---|
| 149 | if (x >= -6.5)
|
---|
| 150 | // calculate the log directly if x is large enough
|
---|
| 151 | return Math.Log(NormalCDF(x));
|
---|
| 152 | else {
|
---|
| 153 | double z = Math.Pow(x, -2);
|
---|
| 154 | // asymptotic series for logcdf
|
---|
| 155 | double y = z * (c[0] + z * (c[1] + z * (c[2] + z * (c[3] + z * (c[4] + z * (c[5] + z * c[6]))))));
|
---|
| 156 | return y - 0.5 * Math.Log(2 * Math.PI) - 0.5 * x * x - Math.Log(-x);
|
---|
[5681] | 157 | }
|
---|
| 158 | }
|
---|
| 159 |
|
---|
[8913] | 160 | // determines the value NormalCDF(mu,sigma, upper) - NormalCDF(mu, sigma, lower)
|
---|
| 161 | // = the integral of the PDF of N(mu, sigma) in the range [lower, upper]
|
---|
| 162 | private static double DensityMass(double lower, double upper, double mu, double sigma) {
|
---|
[8658] | 163 | if (sigma.IsAlmost(0.0)) {
|
---|
[8917] | 164 | if (lower < mu && mu < upper) return 0.0; // all mass is between lower and upper
|
---|
| 165 | else return double.NegativeInfinity; // no mass is between lower and upper
|
---|
[8658] | 166 | }
|
---|
| 167 |
|
---|
[8917] | 168 | if (lower > mu) {
|
---|
| 169 | return DensityMass(-upper, -lower, -mu, sigma);
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | upper = (upper - mu) / sigma;
|
---|
| 173 | lower = (lower - mu) / sigma;
|
---|
| 174 | if (double.IsNegativeInfinity(lower)) return LogNormalCDF(upper);
|
---|
| 175 |
|
---|
| 176 | return LogNormalCDF(upper) + Math.Log(1 - Math.Exp(LogNormalCDF(lower) - LogNormalCDF(upper)));
|
---|
[8658] | 177 | }
|
---|
| 178 |
|
---|
[8913] | 179 | // Calculates the points x1 and x2 where the distributions N(m1, s1) == N(m2,s2).
|
---|
| 180 | // In the general case there should be two cut points. If either s1 or s2 is 0 then x1==x2.
|
---|
| 181 | // If both s1 and s2 are zero than there are no cut points but we should return something reasonable (e.g. (m1 + m2) / 2) then.
|
---|
[5681] | 182 | private static void CalculateCutPoints(double m1, double s1, double m2, double s2, out double x1, out double x2) {
|
---|
[8638] | 183 | if (s1.IsAlmost(s2)) {
|
---|
| 184 | if (m1.IsAlmost(m2)) {
|
---|
| 185 | x1 = double.NegativeInfinity;
|
---|
| 186 | x2 = double.NegativeInfinity;
|
---|
| 187 | } else {
|
---|
[8913] | 188 | // s1==s2 and m1 != m2
|
---|
| 189 | // return something reasonable. cut point should be half way between m1 and m2
|
---|
[8638] | 190 | x1 = (m1 + m2) / 2;
|
---|
| 191 | x2 = double.NegativeInfinity;
|
---|
| 192 | }
|
---|
| 193 | } else if (s1.IsAlmost(0.0)) {
|
---|
[8913] | 194 | // when s1 is 0.0 the cut points are exactly at m1 ...
|
---|
[8638] | 195 | x1 = m1;
|
---|
| 196 | x2 = m1;
|
---|
| 197 | } else if (s2.IsAlmost(0.0)) {
|
---|
[8913] | 198 | // ... same for s2
|
---|
[8638] | 199 | x1 = m2;
|
---|
| 200 | x2 = m2;
|
---|
| 201 | } else {
|
---|
[8658] | 202 | if (s2 < s1) {
|
---|
| 203 | // make sure s2 is the larger std.dev.
|
---|
| 204 | CalculateCutPoints(m2, s2, m1, s1, out x1, out x2);
|
---|
| 205 | } else {
|
---|
[8913] | 206 | // general case
|
---|
| 207 | // calculate the solutions x1, x2 where N(m1,s1) == N(m2,s2)
|
---|
[8917] | 208 | double g = Math.Sqrt(2 * s2 * s2 * Math.Log(s2 / s1) - 2 * s1 * s1 * Math.Log(s2 / s1) - 2 * m1 * m2 + m1 * m1 + m2 * m2);
|
---|
| 209 | double s = (s1 * s1 - s2 * s2);
|
---|
[8921] | 210 | x1 = (m2 * s1 * s1 - m1 * s2 * s2 + s1 * s2 * g) / s;
|
---|
[8917] | 211 | x2 = -(m1 * s2 * s2 - m2 * s1 * s1 + s1 * s2 * g) / s;
|
---|
[8658] | 212 | }
|
---|
[8638] | 213 | }
|
---|
[5681] | 214 | }
|
---|
| 215 | }
|
---|
| 216 | }
|
---|