1 | #region License Information
|
---|
2 |
|
---|
3 | /* HeuristicLab
|
---|
4 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
5 | *
|
---|
6 | * This file is part of HeuristicLab.
|
---|
7 | *
|
---|
8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
9 | * it under the terms of the GNU General Public License as published by
|
---|
10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
11 | * (at your option) any later version.
|
---|
12 | *
|
---|
13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | * GNU General Public License for more details.
|
---|
17 | *
|
---|
18 | * You should have received a copy of the GNU General Public License
|
---|
19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
20 | */
|
---|
21 |
|
---|
22 | #endregion
|
---|
23 |
|
---|
24 | using System;
|
---|
25 | using System.Collections.Generic;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Random;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
35 | [StorableClass]
|
---|
36 | [Item("ClassificationSolution Impacts Calculator", "Calculation of the impacts of input variables for any classification solution")]
|
---|
37 | public sealed class ClassificationSolutionVariableImpactsCalculator : ParameterizedNamedItem {
|
---|
38 | public enum ReplacementMethodEnum {
|
---|
39 | Median,
|
---|
40 | Average,
|
---|
41 | Shuffle,
|
---|
42 | Noise
|
---|
43 | }
|
---|
44 | public enum FactorReplacementMethodEnum {
|
---|
45 | Best,
|
---|
46 | Mode,
|
---|
47 | Shuffle
|
---|
48 | }
|
---|
49 | public enum DataPartitionEnum {
|
---|
50 | Training,
|
---|
51 | Test,
|
---|
52 | All
|
---|
53 | }
|
---|
54 |
|
---|
55 | private const string ReplacementParameterName = "Replacement Method";
|
---|
56 | private const string DataPartitionParameterName = "DataPartition";
|
---|
57 |
|
---|
58 | public IFixedValueParameter<EnumValue<ReplacementMethodEnum>> ReplacementParameter {
|
---|
59 | get { return (IFixedValueParameter<EnumValue<ReplacementMethodEnum>>)Parameters[ReplacementParameterName]; }
|
---|
60 | }
|
---|
61 | public IFixedValueParameter<EnumValue<DataPartitionEnum>> DataPartitionParameter {
|
---|
62 | get { return (IFixedValueParameter<EnumValue<DataPartitionEnum>>)Parameters[DataPartitionParameterName]; }
|
---|
63 | }
|
---|
64 |
|
---|
65 | public ReplacementMethodEnum ReplacementMethod {
|
---|
66 | get { return ReplacementParameter.Value.Value; }
|
---|
67 | set { ReplacementParameter.Value.Value = value; }
|
---|
68 | }
|
---|
69 | public DataPartitionEnum DataPartition {
|
---|
70 | get { return DataPartitionParameter.Value.Value; }
|
---|
71 | set { DataPartitionParameter.Value.Value = value; }
|
---|
72 | }
|
---|
73 |
|
---|
74 |
|
---|
75 | [StorableConstructor]
|
---|
76 | private ClassificationSolutionVariableImpactsCalculator(bool deserializing) : base(deserializing) { }
|
---|
77 | private ClassificationSolutionVariableImpactsCalculator(ClassificationSolutionVariableImpactsCalculator original, Cloner cloner)
|
---|
78 | : base(original, cloner) { }
|
---|
79 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
80 | return new ClassificationSolutionVariableImpactsCalculator(this, cloner);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public ClassificationSolutionVariableImpactsCalculator()
|
---|
84 | : base() {
|
---|
85 | Parameters.Add(new FixedValueParameter<EnumValue<ReplacementMethodEnum>>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue<ReplacementMethodEnum>(ReplacementMethodEnum.Median)));
|
---|
86 | Parameters.Add(new FixedValueParameter<EnumValue<DataPartitionEnum>>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue<DataPartitionEnum>(DataPartitionEnum.Training)));
|
---|
87 | }
|
---|
88 |
|
---|
89 | //mkommend: annoying name clash with static method, open to better naming suggestions
|
---|
90 | public IEnumerable<Tuple<string, double>> Calculate(IClassificationSolution solution) {
|
---|
91 | return CalculateImpacts(solution, DataPartition, ReplacementMethod);
|
---|
92 | }
|
---|
93 |
|
---|
94 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
95 | IClassificationSolution solution,
|
---|
96 | DataPartitionEnum data = DataPartitionEnum.Training,
|
---|
97 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Median,
|
---|
98 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
99 |
|
---|
100 | var problemData = solution.ProblemData;
|
---|
101 | var dataset = problemData.Dataset;
|
---|
102 | var model = (IClassificationModel)solution.Model.Clone(); //mkommend: clone of model is necessary, because the thresholds for IDiscriminantClassificationModels are updated
|
---|
103 |
|
---|
104 | IEnumerable<int> rows;
|
---|
105 | IEnumerable<double> targetValues;
|
---|
106 | double originalAccuracy;
|
---|
107 |
|
---|
108 | OnlineCalculatorError error;
|
---|
109 |
|
---|
110 | switch (data) {
|
---|
111 | case DataPartitionEnum.All:
|
---|
112 | rows = problemData.AllIndices;
|
---|
113 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.AllIndices).ToList();
|
---|
114 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedClassValues, out error);
|
---|
115 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
116 | break;
|
---|
117 | case DataPartitionEnum.Training:
|
---|
118 | rows = problemData.TrainingIndices;
|
---|
119 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToList();
|
---|
120 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedTrainingClassValues, out error);
|
---|
121 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
122 | break;
|
---|
123 | case DataPartitionEnum.Test:
|
---|
124 | rows = problemData.TestIndices;
|
---|
125 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TestIndices).ToList();
|
---|
126 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedTestClassValues, out error);
|
---|
127 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
128 | break;
|
---|
129 | default: throw new ArgumentException(string.Format("DataPartition {0} cannot be handled.", data));
|
---|
130 | }
|
---|
131 |
|
---|
132 | var impacts = new Dictionary<string, double>();
|
---|
133 | var modifiableDataset = ((Dataset)dataset).ToModifiable();
|
---|
134 |
|
---|
135 | var inputvariables = new HashSet<string>(problemData.AllowedInputVariables.Union(solution.Model.VariablesUsedForPrediction));
|
---|
136 | var allowedInputVariables = dataset.VariableNames.Where(v => inputvariables.Contains(v)).ToList();
|
---|
137 |
|
---|
138 | // calculate impacts for double variables
|
---|
139 | foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType<double>)) {
|
---|
140 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows, replacementMethod);
|
---|
141 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
142 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
|
---|
143 |
|
---|
144 | impacts[inputVariable] = originalAccuracy - newAccuracy;
|
---|
145 | }
|
---|
146 |
|
---|
147 | // calculate impacts for string variables
|
---|
148 | foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType<string>)) {
|
---|
149 | if (factorReplacementMethod == FactorReplacementMethodEnum.Best) {
|
---|
150 | // try replacing with all possible values and find the best replacement value
|
---|
151 | var smallestImpact = double.PositiveInfinity;
|
---|
152 | foreach (var repl in problemData.Dataset.GetStringValues(inputVariable, rows).Distinct()) {
|
---|
153 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows,
|
---|
154 | Enumerable.Repeat(repl, dataset.Rows));
|
---|
155 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
156 | if (error != OnlineCalculatorError.None)
|
---|
157 | throw new InvalidOperationException("Error during accuracy calculation with replaced inputs.");
|
---|
158 |
|
---|
159 | var impact = originalAccuracy - newAccuracy;
|
---|
160 | if (impact < smallestImpact) smallestImpact = impact;
|
---|
161 | }
|
---|
162 | impacts[inputVariable] = smallestImpact;
|
---|
163 | } else {
|
---|
164 | // for replacement methods shuffle and mode
|
---|
165 | // calculate impacts for factor variables
|
---|
166 |
|
---|
167 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows,
|
---|
168 | factorReplacementMethod);
|
---|
169 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
170 | if (error != OnlineCalculatorError.None)
|
---|
171 | throw new InvalidOperationException("Error during accuracy calculation with replaced inputs.");
|
---|
172 |
|
---|
173 | impacts[inputVariable] = originalAccuracy - newAccuracy;
|
---|
174 | }
|
---|
175 | } // foreach
|
---|
176 | return impacts.OrderByDescending(i => i.Value).Select(i => Tuple.Create(i.Key, i.Value));
|
---|
177 | }
|
---|
178 |
|
---|
179 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable, ModifiableDataset dataset, IEnumerable<int> rows, ReplacementMethodEnum replacement = ReplacementMethodEnum.Median) {
|
---|
180 | var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList();
|
---|
181 | double replacementValue;
|
---|
182 | List<double> replacementValues;
|
---|
183 | IRandom rand;
|
---|
184 |
|
---|
185 | switch (replacement) {
|
---|
186 | case ReplacementMethodEnum.Median:
|
---|
187 | replacementValue = rows.Select(r => originalValues[r]).Median();
|
---|
188 | replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList();
|
---|
189 | break;
|
---|
190 | case ReplacementMethodEnum.Average:
|
---|
191 | replacementValue = rows.Select(r => originalValues[r]).Average();
|
---|
192 | replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList();
|
---|
193 | break;
|
---|
194 | case ReplacementMethodEnum.Shuffle:
|
---|
195 | // new var has same empirical distribution but the relation to y is broken
|
---|
196 | rand = new FastRandom(31415);
|
---|
197 | // prepare a complete column for the dataset
|
---|
198 | replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList();
|
---|
199 | // shuffle only the selected rows
|
---|
200 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList();
|
---|
201 | int i = 0;
|
---|
202 | // update column values
|
---|
203 | foreach (var r in rows) {
|
---|
204 | replacementValues[r] = shuffledValues[i++];
|
---|
205 | }
|
---|
206 | break;
|
---|
207 | case ReplacementMethodEnum.Noise:
|
---|
208 | var avg = rows.Select(r => originalValues[r]).Average();
|
---|
209 | var stdDev = rows.Select(r => originalValues[r]).StandardDeviation();
|
---|
210 | rand = new FastRandom(31415);
|
---|
211 | // prepare a complete column for the dataset
|
---|
212 | replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList();
|
---|
213 | // update column values
|
---|
214 | foreach (var r in rows) {
|
---|
215 | replacementValues[r] = NormalDistributedRandom.NextDouble(rand, avg, stdDev);
|
---|
216 | }
|
---|
217 | break;
|
---|
218 |
|
---|
219 | default:
|
---|
220 | throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacement));
|
---|
221 | }
|
---|
222 |
|
---|
223 | return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues);
|
---|
224 | }
|
---|
225 |
|
---|
226 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(
|
---|
227 | IClassificationModel model, string variable, ModifiableDataset dataset,
|
---|
228 | IEnumerable<int> rows,
|
---|
229 | FactorReplacementMethodEnum replacement = FactorReplacementMethodEnum.Shuffle) {
|
---|
230 | var originalValues = dataset.GetReadOnlyStringValues(variable).ToList();
|
---|
231 | List<string> replacementValues;
|
---|
232 | IRandom rand;
|
---|
233 |
|
---|
234 | switch (replacement) {
|
---|
235 | case FactorReplacementMethodEnum.Mode:
|
---|
236 | var mostCommonValue = rows.Select(r => originalValues[r])
|
---|
237 | .GroupBy(v => v)
|
---|
238 | .OrderByDescending(g => g.Count())
|
---|
239 | .First().Key;
|
---|
240 | replacementValues = Enumerable.Repeat(mostCommonValue, dataset.Rows).ToList();
|
---|
241 | break;
|
---|
242 | case FactorReplacementMethodEnum.Shuffle:
|
---|
243 | // new var has same empirical distribution but the relation to y is broken
|
---|
244 | rand = new FastRandom(31415);
|
---|
245 | // prepare a complete column for the dataset
|
---|
246 | replacementValues = Enumerable.Repeat(string.Empty, dataset.Rows).ToList();
|
---|
247 | // shuffle only the selected rows
|
---|
248 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList();
|
---|
249 | int i = 0;
|
---|
250 | // update column values
|
---|
251 | foreach (var r in rows) {
|
---|
252 | replacementValues[r] = shuffledValues[i++];
|
---|
253 | }
|
---|
254 | break;
|
---|
255 | default:
|
---|
256 | throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", replacement));
|
---|
257 | }
|
---|
258 |
|
---|
259 | return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues);
|
---|
260 | }
|
---|
261 |
|
---|
262 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable,
|
---|
263 | ModifiableDataset dataset, IEnumerable<int> rows, IEnumerable<double> replacementValues) {
|
---|
264 | var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList();
|
---|
265 | dataset.ReplaceVariable(variable, replacementValues.ToList());
|
---|
266 |
|
---|
267 | var discModel = model as IDiscriminantFunctionClassificationModel;
|
---|
268 | if (discModel != null) {
|
---|
269 | var problemData = new ClassificationProblemData(dataset, dataset.VariableNames, model.TargetVariable);
|
---|
270 | discModel.RecalculateModelParameters(problemData, rows);
|
---|
271 | }
|
---|
272 |
|
---|
273 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
274 | var estimates = model.GetEstimatedClassValues(dataset, rows).ToList();
|
---|
275 | dataset.ReplaceVariable(variable, originalValues);
|
---|
276 |
|
---|
277 | return estimates;
|
---|
278 | }
|
---|
279 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable,
|
---|
280 | ModifiableDataset dataset, IEnumerable<int> rows, IEnumerable<string> replacementValues) {
|
---|
281 | var originalValues = dataset.GetReadOnlyStringValues(variable).ToList();
|
---|
282 | dataset.ReplaceVariable(variable, replacementValues.ToList());
|
---|
283 |
|
---|
284 |
|
---|
285 | var discModel = model as IDiscriminantFunctionClassificationModel;
|
---|
286 | if (discModel != null) {
|
---|
287 | var problemData = new ClassificationProblemData(dataset, dataset.VariableNames, model.TargetVariable);
|
---|
288 | discModel.RecalculateModelParameters(problemData, rows);
|
---|
289 | }
|
---|
290 |
|
---|
291 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
292 | var estimates = model.GetEstimatedClassValues(dataset, rows).ToList();
|
---|
293 | dataset.ReplaceVariable(variable, originalValues);
|
---|
294 |
|
---|
295 | return estimates;
|
---|
296 | }
|
---|
297 | }
|
---|
298 | }
|
---|