[15638] | 1 | #region License Information
|
---|
| 2 |
|
---|
| 3 | /* HeuristicLab
|
---|
[17180] | 4 | * Copyright (C) Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15638] | 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #endregion
|
---|
| 23 |
|
---|
| 24 | using System;
|
---|
[16422] | 25 | using System.Collections;
|
---|
[15638] | 26 | using System.Collections.Generic;
|
---|
| 27 | using System.Linq;
|
---|
| 28 | using HeuristicLab.Common;
|
---|
| 29 | using HeuristicLab.Core;
|
---|
| 30 | using HeuristicLab.Data;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
[16565] | 32 | using HEAL.Attic;
|
---|
[15638] | 33 | using HeuristicLab.Random;
|
---|
| 34 |
|
---|
| 35 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
[16565] | 36 | [StorableType("768AFEDB-5641-429E-85A1-A0BE8DFDD56F")]
|
---|
[15638] | 37 | [Item("ClassificationSolution Impacts Calculator", "Calculation of the impacts of input variables for any classification solution")]
|
---|
| 38 | public sealed class ClassificationSolutionVariableImpactsCalculator : ParameterizedNamedItem {
|
---|
[16422] | 39 | #region Parameters/Properties
|
---|
[16565] | 40 | [StorableType("e6cd2226-10cd-4765-ae1a-924e316b6aac")]
|
---|
[15638] | 41 | public enum ReplacementMethodEnum {
|
---|
| 42 | Median,
|
---|
| 43 | Average,
|
---|
| 44 | Shuffle,
|
---|
| 45 | Noise
|
---|
| 46 | }
|
---|
[16565] | 47 |
|
---|
| 48 | [StorableType("84d84ccf-5d6d-432f-a946-eb499935e5c8")]
|
---|
[15638] | 49 | public enum FactorReplacementMethodEnum {
|
---|
| 50 | Best,
|
---|
| 51 | Mode,
|
---|
| 52 | Shuffle
|
---|
| 53 | }
|
---|
[16565] | 54 |
|
---|
| 55 | [StorableType("70f30113-df01-41b4-9e3b-2982035de498")]
|
---|
[15638] | 56 | public enum DataPartitionEnum {
|
---|
| 57 | Training,
|
---|
| 58 | Test,
|
---|
| 59 | All
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | private const string ReplacementParameterName = "Replacement Method";
|
---|
[16422] | 63 | private const string FactorReplacementParameterName = "Factor Replacement Method";
|
---|
[15638] | 64 | private const string DataPartitionParameterName = "DataPartition";
|
---|
| 65 |
|
---|
| 66 | public IFixedValueParameter<EnumValue<ReplacementMethodEnum>> ReplacementParameter {
|
---|
| 67 | get { return (IFixedValueParameter<EnumValue<ReplacementMethodEnum>>)Parameters[ReplacementParameterName]; }
|
---|
| 68 | }
|
---|
[16422] | 69 | public IFixedValueParameter<EnumValue<FactorReplacementMethodEnum>> FactorReplacementParameter {
|
---|
| 70 | get { return (IFixedValueParameter<EnumValue<FactorReplacementMethodEnum>>)Parameters[FactorReplacementParameterName]; }
|
---|
| 71 | }
|
---|
[15638] | 72 | public IFixedValueParameter<EnumValue<DataPartitionEnum>> DataPartitionParameter {
|
---|
| 73 | get { return (IFixedValueParameter<EnumValue<DataPartitionEnum>>)Parameters[DataPartitionParameterName]; }
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | public ReplacementMethodEnum ReplacementMethod {
|
---|
| 77 | get { return ReplacementParameter.Value.Value; }
|
---|
| 78 | set { ReplacementParameter.Value.Value = value; }
|
---|
| 79 | }
|
---|
[16422] | 80 | public FactorReplacementMethodEnum FactorReplacementMethod {
|
---|
| 81 | get { return FactorReplacementParameter.Value.Value; }
|
---|
| 82 | set { FactorReplacementParameter.Value.Value = value; }
|
---|
| 83 | }
|
---|
[15638] | 84 | public DataPartitionEnum DataPartition {
|
---|
| 85 | get { return DataPartitionParameter.Value.Value; }
|
---|
| 86 | set { DataPartitionParameter.Value.Value = value; }
|
---|
| 87 | }
|
---|
[16422] | 88 | #endregion
|
---|
[15638] | 89 |
|
---|
[16422] | 90 | #region Ctor/Cloner
|
---|
[15638] | 91 | [StorableConstructor]
|
---|
[16565] | 92 | private ClassificationSolutionVariableImpactsCalculator(StorableConstructorFlag _) : base(_) { }
|
---|
[15638] | 93 | private ClassificationSolutionVariableImpactsCalculator(ClassificationSolutionVariableImpactsCalculator original, Cloner cloner)
|
---|
| 94 | : base(original, cloner) { }
|
---|
| 95 | public ClassificationSolutionVariableImpactsCalculator()
|
---|
| 96 | : base() {
|
---|
[16422] | 97 | Parameters.Add(new FixedValueParameter<EnumValue<ReplacementMethodEnum>>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue<ReplacementMethodEnum>(ReplacementMethodEnum.Shuffle)));
|
---|
| 98 | Parameters.Add(new FixedValueParameter<EnumValue<FactorReplacementMethodEnum>>(FactorReplacementParameterName, "The replacement method for factor variables during impact calculation.", new EnumValue<FactorReplacementMethodEnum>(FactorReplacementMethodEnum.Best)));
|
---|
[15638] | 99 | Parameters.Add(new FixedValueParameter<EnumValue<DataPartitionEnum>>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue<DataPartitionEnum>(DataPartitionEnum.Training)));
|
---|
| 100 | }
|
---|
| 101 |
|
---|
[16422] | 102 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 103 | return new ClassificationSolutionVariableImpactsCalculator(this, cloner);
|
---|
| 104 | }
|
---|
| 105 | #endregion
|
---|
| 106 |
|
---|
[15638] | 107 | //mkommend: annoying name clash with static method, open to better naming suggestions
|
---|
| 108 | public IEnumerable<Tuple<string, double>> Calculate(IClassificationSolution solution) {
|
---|
[16422] | 109 | return CalculateImpacts(solution, ReplacementMethod, FactorReplacementMethod, DataPartition);
|
---|
[15638] | 110 | }
|
---|
| 111 |
|
---|
| 112 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
| 113 | IClassificationSolution solution,
|
---|
[16422] | 114 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 115 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best,
|
---|
| 116 | DataPartitionEnum dataPartition = DataPartitionEnum.Training) {
|
---|
[15638] | 117 |
|
---|
[16422] | 118 | IEnumerable<int> rows = GetPartitionRows(dataPartition, solution.ProblemData);
|
---|
| 119 | IEnumerable<double> estimatedClassValues = solution.GetEstimatedClassValues(rows);
|
---|
[15871] | 120 | var model = (IClassificationModel)solution.Model.Clone(); //mkommend: clone of model is necessary, because the thresholds for IDiscriminantClassificationModels are updated
|
---|
[15638] | 121 |
|
---|
[16422] | 122 | return CalculateImpacts(model, solution.ProblemData, estimatedClassValues, rows, replacementMethod, factorReplacementMethod);
|
---|
| 123 | }
|
---|
[15638] | 124 |
|
---|
[16422] | 125 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
| 126 | IClassificationModel model,
|
---|
| 127 | IClassificationProblemData problemData,
|
---|
| 128 | IEnumerable<double> estimatedClassValues,
|
---|
| 129 | IEnumerable<int> rows,
|
---|
| 130 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 131 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
[15638] | 132 |
|
---|
[16422] | 133 | //fholzing: try and catch in case a different dataset is loaded, otherwise statement is neglectable
|
---|
| 134 | var missingVariables = model.VariablesUsedForPrediction.Except(problemData.Dataset.VariableNames);
|
---|
| 135 | if (missingVariables.Any()) {
|
---|
| 136 | throw new InvalidOperationException(string.Format("Can not calculate variable impacts, because the model uses inputs missing in the dataset ({0})", string.Join(", ", missingVariables)));
|
---|
[15638] | 137 | }
|
---|
[16422] | 138 | IEnumerable<double> targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 139 | var originalQuality = CalculateQuality(targetValues, estimatedClassValues);
|
---|
[15638] | 140 |
|
---|
| 141 | var impacts = new Dictionary<string, double>();
|
---|
[16422] | 142 | var inputvariables = new HashSet<string>(problemData.AllowedInputVariables.Union(model.VariablesUsedForPrediction));
|
---|
| 143 | var modifiableDataset = ((Dataset)(problemData.Dataset).Clone()).ToModifiable();
|
---|
[15638] | 144 |
|
---|
[16422] | 145 | foreach (var inputVariable in inputvariables) {
|
---|
| 146 | impacts[inputVariable] = CalculateImpact(inputVariable, model, problemData, modifiableDataset, rows, replacementMethod, factorReplacementMethod, targetValues, originalQuality);
|
---|
| 147 | }
|
---|
[15638] | 148 |
|
---|
[16422] | 149 | return impacts.Select(i => Tuple.Create(i.Key, i.Value));
|
---|
| 150 | }
|
---|
[15638] | 151 |
|
---|
[16422] | 152 | public static double CalculateImpact(string variableName,
|
---|
| 153 | IClassificationModel model,
|
---|
| 154 | IClassificationProblemData problemData,
|
---|
| 155 | ModifiableDataset modifiableDataset,
|
---|
| 156 | IEnumerable<int> rows,
|
---|
| 157 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 158 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best,
|
---|
| 159 | IEnumerable<double> targetValues = null,
|
---|
| 160 | double quality = double.NaN) {
|
---|
| 161 |
|
---|
| 162 | if (!model.VariablesUsedForPrediction.Contains(variableName)) { return 0.0; }
|
---|
| 163 | if (!problemData.Dataset.VariableNames.Contains(variableName)) {
|
---|
| 164 | throw new InvalidOperationException(string.Format("Can not calculate variable impact, because the model uses inputs missing in the dataset ({0})", variableName));
|
---|
[15638] | 165 | }
|
---|
| 166 |
|
---|
[16422] | 167 | if (targetValues == null) {
|
---|
| 168 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows);
|
---|
| 169 | }
|
---|
| 170 | if (quality == double.NaN) {
|
---|
| 171 | quality = CalculateQuality(model.GetEstimatedClassValues(modifiableDataset, rows), targetValues);
|
---|
| 172 | }
|
---|
[15638] | 173 |
|
---|
[16422] | 174 | IList originalValues = null;
|
---|
| 175 | IList replacementValues = GetReplacementValues(modifiableDataset, variableName, model, rows, targetValues, out originalValues, replacementMethod, factorReplacementMethod);
|
---|
[15638] | 176 |
|
---|
[16422] | 177 | double newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, replacementValues, targetValues);
|
---|
| 178 | double impact = quality - newValue;
|
---|
[15638] | 179 |
|
---|
[16422] | 180 | return impact;
|
---|
[15638] | 181 | }
|
---|
| 182 |
|
---|
[16422] | 183 | private static IList GetReplacementValues(ModifiableDataset modifiableDataset,
|
---|
| 184 | string variableName,
|
---|
| 185 | IClassificationModel model,
|
---|
| 186 | IEnumerable<int> rows,
|
---|
| 187 | IEnumerable<double> targetValues,
|
---|
| 188 | out IList originalValues,
|
---|
| 189 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle,
|
---|
| 190 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
| 191 |
|
---|
| 192 | IList replacementValues = null;
|
---|
| 193 | if (modifiableDataset.VariableHasType<double>(variableName)) {
|
---|
| 194 | originalValues = modifiableDataset.GetReadOnlyDoubleValues(variableName).ToList();
|
---|
| 195 | replacementValues = GetReplacementValuesForDouble(modifiableDataset, rows, (List<double>)originalValues, replacementMethod);
|
---|
| 196 | } else if (modifiableDataset.VariableHasType<string>(variableName)) {
|
---|
| 197 | originalValues = modifiableDataset.GetReadOnlyStringValues(variableName).ToList();
|
---|
| 198 | replacementValues = GetReplacementValuesForString(model, modifiableDataset, variableName, rows, (List<string>)originalValues, targetValues, factorReplacementMethod);
|
---|
| 199 | } else {
|
---|
| 200 | throw new NotSupportedException("Variable not supported");
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | return replacementValues;
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | private static IList GetReplacementValuesForDouble(ModifiableDataset modifiableDataset,
|
---|
| 207 | IEnumerable<int> rows,
|
---|
| 208 | List<double> originalValues,
|
---|
| 209 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Shuffle) {
|
---|
| 210 |
|
---|
| 211 | IRandom random = new FastRandom(31415);
|
---|
| 212 | List<double> replacementValues;
|
---|
[15638] | 213 | double replacementValue;
|
---|
| 214 |
|
---|
[16422] | 215 | switch (replacementMethod) {
|
---|
[15638] | 216 | case ReplacementMethodEnum.Median:
|
---|
| 217 | replacementValue = rows.Select(r => originalValues[r]).Median();
|
---|
[16422] | 218 | replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList();
|
---|
[15638] | 219 | break;
|
---|
| 220 | case ReplacementMethodEnum.Average:
|
---|
| 221 | replacementValue = rows.Select(r => originalValues[r]).Average();
|
---|
[16422] | 222 | replacementValues = Enumerable.Repeat(replacementValue, modifiableDataset.Rows).ToList();
|
---|
[15638] | 223 | break;
|
---|
| 224 | case ReplacementMethodEnum.Shuffle:
|
---|
| 225 | // new var has same empirical distribution but the relation to y is broken
|
---|
| 226 | // prepare a complete column for the dataset
|
---|
[16422] | 227 | replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList();
|
---|
[15638] | 228 | // shuffle only the selected rows
|
---|
[16422] | 229 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList();
|
---|
[15638] | 230 | int i = 0;
|
---|
| 231 | // update column values
|
---|
| 232 | foreach (var r in rows) {
|
---|
| 233 | replacementValues[r] = shuffledValues[i++];
|
---|
| 234 | }
|
---|
| 235 | break;
|
---|
| 236 | case ReplacementMethodEnum.Noise:
|
---|
| 237 | var avg = rows.Select(r => originalValues[r]).Average();
|
---|
| 238 | var stdDev = rows.Select(r => originalValues[r]).StandardDeviation();
|
---|
| 239 | // prepare a complete column for the dataset
|
---|
[16422] | 240 | replacementValues = Enumerable.Repeat(double.NaN, modifiableDataset.Rows).ToList();
|
---|
[15638] | 241 | // update column values
|
---|
| 242 | foreach (var r in rows) {
|
---|
[16422] | 243 | replacementValues[r] = NormalDistributedRandom.NextDouble(random, avg, stdDev);
|
---|
[15638] | 244 | }
|
---|
| 245 | break;
|
---|
| 246 |
|
---|
| 247 | default:
|
---|
[16422] | 248 | throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacementMethod));
|
---|
[15638] | 249 | }
|
---|
| 250 |
|
---|
[16422] | 251 | return replacementValues;
|
---|
[15638] | 252 | }
|
---|
| 253 |
|
---|
[16422] | 254 | private static IList GetReplacementValuesForString(IClassificationModel model,
|
---|
| 255 | ModifiableDataset modifiableDataset,
|
---|
| 256 | string variableName,
|
---|
[15638] | 257 | IEnumerable<int> rows,
|
---|
[16422] | 258 | List<string> originalValues,
|
---|
| 259 | IEnumerable<double> targetValues,
|
---|
| 260 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Shuffle) {
|
---|
[15638] | 261 |
|
---|
[16422] | 262 | List<string> replacementValues = null;
|
---|
| 263 | IRandom random = new FastRandom(31415);
|
---|
| 264 |
|
---|
| 265 | switch (factorReplacementMethod) {
|
---|
| 266 | case FactorReplacementMethodEnum.Best:
|
---|
| 267 | // try replacing with all possible values and find the best replacement value
|
---|
| 268 | var bestQuality = double.NegativeInfinity;
|
---|
| 269 | foreach (var repl in modifiableDataset.GetStringValues(variableName, rows).Distinct()) {
|
---|
| 270 | List<string> curReplacementValues = Enumerable.Repeat(repl, modifiableDataset.Rows).ToList();
|
---|
| 271 | //fholzing: this result could be used later on (theoretically), but is neglected for better readability/method consistency
|
---|
| 272 | var newValue = CalculateQualityForReplacement(model, modifiableDataset, variableName, originalValues, rows, curReplacementValues, targetValues);
|
---|
| 273 | var curQuality = newValue;
|
---|
| 274 |
|
---|
| 275 | if (curQuality > bestQuality) {
|
---|
| 276 | bestQuality = curQuality;
|
---|
| 277 | replacementValues = curReplacementValues;
|
---|
| 278 | }
|
---|
| 279 | }
|
---|
| 280 | break;
|
---|
[15638] | 281 | case FactorReplacementMethodEnum.Mode:
|
---|
| 282 | var mostCommonValue = rows.Select(r => originalValues[r])
|
---|
| 283 | .GroupBy(v => v)
|
---|
| 284 | .OrderByDescending(g => g.Count())
|
---|
| 285 | .First().Key;
|
---|
[16422] | 286 | replacementValues = Enumerable.Repeat(mostCommonValue, modifiableDataset.Rows).ToList();
|
---|
[15638] | 287 | break;
|
---|
| 288 | case FactorReplacementMethodEnum.Shuffle:
|
---|
| 289 | // new var has same empirical distribution but the relation to y is broken
|
---|
| 290 | // prepare a complete column for the dataset
|
---|
[16422] | 291 | replacementValues = Enumerable.Repeat(string.Empty, modifiableDataset.Rows).ToList();
|
---|
[15638] | 292 | // shuffle only the selected rows
|
---|
[16422] | 293 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(random).ToList();
|
---|
[15638] | 294 | int i = 0;
|
---|
| 295 | // update column values
|
---|
| 296 | foreach (var r in rows) {
|
---|
| 297 | replacementValues[r] = shuffledValues[i++];
|
---|
| 298 | }
|
---|
| 299 | break;
|
---|
| 300 | default:
|
---|
[16422] | 301 | throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", factorReplacementMethod));
|
---|
[15638] | 302 | }
|
---|
| 303 |
|
---|
[16422] | 304 | return replacementValues;
|
---|
[15638] | 305 | }
|
---|
| 306 |
|
---|
[16422] | 307 | private static double CalculateQualityForReplacement(
|
---|
| 308 | IClassificationModel model,
|
---|
| 309 | ModifiableDataset modifiableDataset,
|
---|
| 310 | string variableName,
|
---|
| 311 | IList originalValues,
|
---|
| 312 | IEnumerable<int> rows,
|
---|
| 313 | IList replacementValues,
|
---|
| 314 | IEnumerable<double> targetValues) {
|
---|
[15871] | 315 |
|
---|
[16422] | 316 | modifiableDataset.ReplaceVariable(variableName, replacementValues);
|
---|
[15871] | 317 | var discModel = model as IDiscriminantFunctionClassificationModel;
|
---|
| 318 | if (discModel != null) {
|
---|
[16422] | 319 | var problemData = new ClassificationProblemData(modifiableDataset, modifiableDataset.VariableNames, model.TargetVariable);
|
---|
[15871] | 320 | discModel.RecalculateModelParameters(problemData, rows);
|
---|
| 321 | }
|
---|
| 322 |
|
---|
[15638] | 323 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
[16422] | 324 | var estimates = model.GetEstimatedClassValues(modifiableDataset, rows).ToList();
|
---|
| 325 | var ret = CalculateQuality(targetValues, estimates);
|
---|
| 326 | modifiableDataset.ReplaceVariable(variableName, originalValues);
|
---|
[15638] | 327 |
|
---|
[16422] | 328 | return ret;
|
---|
[15638] | 329 | }
|
---|
[15871] | 330 |
|
---|
[16422] | 331 | public static double CalculateQuality(IEnumerable<double> targetValues, IEnumerable<double> estimatedClassValues) {
|
---|
| 332 | OnlineCalculatorError errorState;
|
---|
| 333 | var ret = OnlineAccuracyCalculator.Calculate(targetValues, estimatedClassValues, out errorState);
|
---|
| 334 | if (errorState != OnlineCalculatorError.None) { throw new InvalidOperationException("Error during calculation with replaced inputs."); }
|
---|
| 335 | return ret;
|
---|
| 336 | }
|
---|
[15871] | 337 |
|
---|
[16422] | 338 | public static IEnumerable<int> GetPartitionRows(DataPartitionEnum dataPartition, IClassificationProblemData problemData) {
|
---|
| 339 | IEnumerable<int> rows;
|
---|
| 340 |
|
---|
| 341 | switch (dataPartition) {
|
---|
| 342 | case DataPartitionEnum.All:
|
---|
| 343 | rows = problemData.AllIndices;
|
---|
| 344 | break;
|
---|
| 345 | case DataPartitionEnum.Test:
|
---|
| 346 | rows = problemData.TestIndices;
|
---|
| 347 | break;
|
---|
| 348 | case DataPartitionEnum.Training:
|
---|
| 349 | rows = problemData.TrainingIndices;
|
---|
| 350 | break;
|
---|
| 351 | default:
|
---|
| 352 | throw new NotSupportedException("DataPartition not supported");
|
---|
[15871] | 353 | }
|
---|
| 354 |
|
---|
[16422] | 355 | return rows;
|
---|
[15638] | 356 | }
|
---|
| 357 | }
|
---|
[16422] | 358 | } |
---|